Citation: Wen LUO, Lin JIN, Palanisamy Kannan, Jinle HOU, Peng HUO, Jinzhong YAO, Peng WANG. Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418 shu

Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes

Figures(4)

  • A series of novel titanium-oxo-clusters (TOCs, including Zn-Ti11 and Cd-Ti11) was designed for supercapacitors, expanding the potential application of TOCs. These materials demonstrate the benefits of titanium-based materials through their excellent pseudocapacitive energy storage capabilities. The prepared supercapacitor exhibited impressive performance, with a maximum power density of 9.5 W·kg-1 and an energy density of 463 Wh·kg-1.
  • 加载中
    1. [1]

      Zhang G Y, Li W Y, Liu C Y, Jia J, Tung C H, Wang Y F. Titanium-oxide host clusters with exchangeable guests[J]. J. Am. Chem. Soc., 2018,140(1):66-69. doi: 10.1021/jacs.7b10565

    2. [2]

      Gao M Y, Wang Z R, Li Q H, Li D J, Sun Y Y, Andaloussi Y H, Ma C, Deng C H, Zhang J, Zhang L. Black titanium-oxo clusters with ultralow band gaps and enhanced nonlinear optical performance[J]. J. Am. Chem. Soc., 2022,144(18):8153-8161. doi: 10.1021/jacs.2c00765

    3. [3]

      Zhu Q Y, Dai J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands[J]. Coord. Chem. Rev., 2021,430213664. doi: 10.1016/j.ccr.2020.213664

    4. [4]

      Zhang L, Fan X, Yi X F, Lin X, Zhang J. Coordination-delayed-hydrolysis method for the synthesis and structural modulation of titanium-oxo clusters[J]. Acc. Chem. Res., 2022,55(21):3150-3161. doi: 10.1021/acs.accounts.2c00421

    5. [5]

      Wang H Y, Fu M Y, Zhai H L, Zhu Q Y, Dai J. Mono- and bismetalphenanthroline-substituted Ti12 clusters: Structural variance and the effect on electronic state and photocurrent property[J]. Inorg. Chem., 2021,60(16):12255-12262. doi: 10.1021/acs.inorgchem.1c01456

    6. [6]

      Luo W, Hu B, Zhang H L, Li C Y, Shi Y P, Li X C, Jin L. Antibacterial, photothermal and stable Ag-titanium-oxo-clusters hydrogel designed for wound healing[J]. Mater. Design, 2023,226111674. doi: 10.1016/j.matdes.2023.111674

    7. [7]

      Day V W, Eberspacher T A, Klemperer W G, Park C W. Dodecatitanates: A new family of stable polyoxotitanates[J]. J. Am. Chem. Soc., 1993,115(18):8469-8470. doi: 10.1021/ja00071a075

    8. [8]

      Zhang G L, Wang S, Hou J L, Mo C J, Que C J, Zhu Q Y, Dai J. A lanthanide-titanium (LnTi11) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst[J]. Dalton Trans., 2016,45(44):17681-17686. doi: 10.1039/C6DT03034C

    9. [9]

      Zhu B C, Hong Q L, Yi X F, Zhang J, Zhang L. Supramolecular coassembly of the Ti8L12 cube with[Ti(DMF)6] species and Ti12-oxo cluster[J]. Inorg. Chem., 2020,59(12):8291-8297. doi: 10.1021/acs.inorgchem.0c00682

    10. [10]

      Yang S, Su H C, Hou J L, Luo W, Zou D H, Zhu Q Y, Dai J. The effects of transition-metal doping and chromophore anchoring on the photocurrent response of titanium-oxo-clusters[J]. Dalton Trans., 2017,46(29):9639-9645. doi: 10.1039/C7DT01603D

    11. [11]

      Wang C, Liu C, Li L J, Sun Z M. Synthesis, crystal structures, and photochemical properties of a family of heterometallic titanium oxo clusters[J]. Inorg. Chem., 2019,58(9):6312-6319. doi: 10.1021/acs.inorgchem.9b00508

    12. [12]

      Fu M Y, Wang H Y, Zhai H L, Zhu Q Y, Dai J. A convenient procedure for preparing BiOX-TiO2 photoelectrocatalytic electrodes from a titanium-oxo compound-modified carbon fiber cloth[J]. Inorg. Chem., 2022,61(9):4024-4032. doi: 10.1021/acs.inorgchem.1c03779

    13. [13]

      Wang K B, Chen C Y, Li Y H, Hong Y, Wu H, Zhang C, Zhang Q C. Insight into electrochemical performance of nitrogen-doped carbon/NiCo-alloy active nanocomposites[J]. Small, 2023,19(23)2300054. doi: 10.1002/smll.202300054

    14. [14]

      Wang K B, Guo Y X, Zhang Q C. Metal-organic frameworks constructed from iron-series elements for supercapacitors[J]. Small Struct., 2022,3(5)2100115. doi: 10.1002/sstr.202100115

    15. [15]

      Fukuhara M, Kuroda T, Hasegawa F, Hashida T, Takeda M, Konno K, Fujima N. AlO6 clusters' electric storage effect in amorphous alumina supercapacitors[J]. Sci. Rep., 2021,11(1)1699. doi: 10.1038/s41598-021-81483-2

    16. [16]

      Roy S, Vemuri V, Maiti S, Manoj K S, Subbarao U, Peter S C. Two Keggin-based isostructural POMOF hybrids: Synthesis, crystal structure, and catalytic properties[J]. Inorg. Chem., 2018,57(19):12078-12092. doi: 10.1021/acs.inorgchem.8b01631

    17. [17]

      Azambuja F D, Moons J, Parac-Vogt T N. The dawn of metal-oxo clusters as artificial proteases: From discovery to the present and beyond[J]. Acc. Chem. Res., 2021,54(7):1673-1684. doi: 10.1021/acs.accounts.0c00666

    18. [18]

      Nyman M. Small-angle X-ray scattering to determine solution speciation of metal-oxo clusters[J]. Coord. Chem. Rev., 2017,352:461-472. doi: 10.1016/j.ccr.2016.11.014

    19. [19]

      Schubert U. Titanium-oxo clusters with bi- and tridentate organic ligands: Gradual evolution of the structures from small to big[J]. Chem.-Eur. J., 2021,27(44):11239-11256. doi: 10.1002/chem.202101287

    20. [20]

      Dance I G, Choy A, Scudder M L. Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E=sulfur or selenium; M=zinc or cadmium): Molecular supertetrahedral fragments of the cubic metal chalcogenide lattice[J]. J. Am. Chem. Soc., 1984,106(21):6285-6295. doi: 10.1021/ja00333a030

    21. [21]

      Jiang J B, Bian G Q, Zhang Y P, Luo W, Zhu Q Y, Dai J. Anioncation charge-transfer properties and spectral studies of[M(phen)3][Cd4(SPh)10] (M=Ru, Fe, and Ni)[J]. Dalton Trans., 2011,40(37):9551-9556. doi: 10.1039/c1dt10860c

    22. [22]

      Lin J H, Zhong Z X, Wang H H, Zheng X H, Wang Y H, Qi J L, Cao J, Fei W D, Huang Y D, Feng J C. Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery[J]. J. Power Sources, 2018,407:6-13. doi: 10.1016/j.jpowsour.2018.10.046

    23. [23]

      Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Qian J H, Kim E J. Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high-rate electrodes for supercapacitors[J]. J. Alloy. Compd., 2017,717:108-115. doi: 10.1016/j.jallcom.2017.04.239

    24. [24]

      Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Qian J H, Liu X Y. Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors[J]. Chem. Eng. J., 2018,334:1466-1476. doi: 10.1016/j.cej.2017.11.085

    25. [25]

      Shen J Q, Chen X Z, Wang P, Zhou F, Lu L, Wang R F, Linkov V, Ji S. Electrochemical performance of zinc carbodiimides based porous nanocomposites as supercapacitors[J]. Appl. Surf. Sci., 2021,541148355. doi: 10.1016/j.apsusc.2020.148355

    26. [26]

      Yu L L, Wang X M, Cheng M L, Rong H R, Song Y D, Liu Q. A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors[J]. Cryst. Growth Des., 2018,18(1):280-285. doi: 10.1021/acs.cgd.7b01219

    27. [27]

      Zhao W S, Li G D, Tang Z Y. Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts[J]. Nano Today, 2019,27:178-197. doi: 10.1016/j.nantod.2019.05.007

    28. [28]

      Fleischmann S, Mitchell J B, Wang R C, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    29. [29]

      Wang R T, Wang S J, Peng X, Zhang Y B, Jin D D, Chu P K, Zhang L. Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: Toward high-performance sodium-ion-based hybrid supercapacitor[J]. ACS Appl. Mater. Interfaces, 2017,9(38):32745-32755. doi: 10.1021/acsami.7b09813

    30. [30]

      Hou Y, Pang H J, Gómez-García C J, Ma H Y, Wang X M, Tan L C. Polyoxometalate metal-organic frameworks: Keggin clusters encapsulated into silver-triazole nanocages and open frameworks with supercapacitor performance[J]. Inorg. Chem., 2019,58(23):16028-16039. doi: 10.1021/acs.inorgchem.9b02516

    31. [31]

      Hou Y, Chai D F, Li B N, Pang H J, Ma H Y, Wang X M, Tan L C. Polyoxometalate-incorporated metallacalixarene@graphene composite electrodes for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11(23):20845-20853. doi: 10.1021/acsami.9b04649

    32. [32]

      Chai D F, Hou Y, O'halloran K P, Pang H J, Ma H Y, Wang G N, Wang X M. Enhancing energy storage via tea-dependent controlled syntheses: Two series of polyoxometalate-based inorganic-organic hybrids and their supercapacitor properties[J]. ChemElectroChem, 2018,5(22):3443-3450. doi: 10.1002/celc.201801081

    33. [33]

      Skunik M, Chojak M, Rutkowska I A, Kulesza P J. Improved capacitance characteristics during electrochemical charging of carbon nanotubes modified with polyoxometallate monolayers[J]. Electrochim. Acta, 2008,53(11):3862-3869. doi: 10.1016/j.electacta.2007.11.049

    34. [34]

      Wang K B, Wang Z K, Wang S E, Chu Y, Xi R, Zhang X Y, Wu H. Layered Cu-MOFs containing[Mo8O26]4- clusters as supercapacitor electrode materials[J]. Chem. Eng. J., 2019,367:239-248. doi: 10.1016/j.cej.2019.02.145

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    7. [7]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    8. [8]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    9. [9]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    10. [10]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    13. [13]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    15. [15]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    16. [16]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    17. [17]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    18. [18]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    19. [19]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    20. [20]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

Metrics
  • PDF Downloads(1)
  • Abstract views(115)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return