Citation: Weichen WANG, Chunhua GONG, Junyong ZHANG, Yanfeng BI, Hao XU, Jingli XIE. Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415 shu

Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction

Figures(6)

  • Two metal-organic frameworks (MOFs) containing rigid bis(triazole) ligand, namely {[Zn2(L)(TP)2(H2O)·H2O]}n (1) and [Zn(L)(HTMA)]n (2), where L=4, 4'-(3, 3'-dimethyl-(1, 1'-biphenyl)-4, 4'-diyl)bis(4H-1, 2, 4-triazole), H2TP=terephthalic acid, H3TMA=1, 3, 5-benzenetricarboxylic acid, were synthesized by using acid-base mixed ligands strategy and structurally characterized by X-ray single-crystal diffraction. Structural analysis reveals that MOF 1 displays a 3, 6-connected 2D structure with a new topological point symbol of (42·6)2(48·66·8), while MOF 2 presents a 2D sql topology structure. The catalytic studies reveal that 2 exhibits excellent catalytic activity for the cycloaddition reaction of CO2 with epoxides under mild conditions. Furthermore, 2 can be reused at least three times while maintaining its catalytic ability.
  • 加载中
    1. [1]

      Jacobson M Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy Environ. Sci., 2009,2:148-173. doi: 10.1039/B809990C

    2. [2]

      Jones W D. Carbon capture and conversion[J]. J. Am. Chem. Soc., 2020,142:4955-4957. doi: 10.1021/jacs.0c02356

    3. [3]

      Zou Y H, Huang Y B, Si D H, Yin Q, Wu Q J, Weng Z X, Cao R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion[J]. Angew. Chem. Int. Ed., 2021,60(38):20915-20920. doi: 10.1002/anie.202107156

    4. [4]

      Li J, Ma Y G, McCarthy M C, Sculley J, Yu J L, Jeong H, Balbuena P B, Zhou H. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[J]. Coord. Chem. Rev., 2011,255:1791-1823. doi: 10.1016/j.ccr.2011.02.012

    5. [5]

      Wu Q J, Si D H, Sun P P, Dong S Z, Chen Q, Ye S H, Sun D, Cao R, Huang Y B. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site[J]. Angew. Chem. Int. Ed., 2023,62(36)e2023068.

    6. [6]

      Liang J, Xie Y Q, Wang X S, Wang Q, Liu T T, Huang Y B, Cao R. An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate[J]. Chem. Commun., 2018,54:342-345. doi: 10.1039/C7CC08630J

    7. [7]

      Trickett C A, Helal A, Al-Maythalony B A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017,2(8)17045. doi: 10.1038/natrevmats.2017.45

    8. [8]

      Guo F, Zhang X L. Metal-organic frameworks for the energy-related conversion of CO2 into cyclic carbonates[J]. Dalton Trans., 2020,49:9935-9947. doi: 10.1039/D0DT01516D

    9. [9]

      Tian D W, Liu B Y, Gan Q Y, Li H R, Darensbourg D J. Formation of cyclic carbonates from carbon dioxide and epoxides coupling reactions efficiently catalyzed by robust, recyclable one-component aluminum-salen complexes[J]. ACS Catal., 2012,2:2029-2035. doi: 10.1021/cs300462r

    10. [10]

      Yang H M, Zhang X, Zhang G Y, Fei H H. An alkaline-resistant Ag(Ⅱ)-anchored pyrazolate-based metal-organic framework for chemical fixation of CO2[J]. Chem. Commun., 2018,54:4469-4472. doi: 10.1039/C8CC01461B

    11. [11]

      Liu X H, Ma J G, Niu Z, Yang G M, Cheng P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure[J]. Angew. Chem. Int. Ed., 2015,127:1002-1005. doi: 10.1002/ange.201409103

    12. [12]

      Grignard B, Gennen S, Jerome C, Kleij A W. Detrembleur C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers[J]. Chem. Soc. Rev., 2019,48:4466-4514.

    13. [13]

      ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of carbon dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.  

    14. [14]

      Hanusch J M, Kerschgens I P, Huber F, Neuburger M, Gademann K. Pyrrolizidines for direct air capture and CO2 conversion[J]. Chem. Commun., 2019,55:949-952. doi: 10.1039/C8CC08574A

    15. [15]

      Zhang Y M, Li B Y, Williams K, Gao W Y, Ma S Q. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake[J]. Chem. Commun., 2013,49:10269-10271. doi: 10.1039/c3cc45252b

    16. [16]

      Bae Y, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011,50:11586-11596. doi: 10.1002/anie.201101891

    17. [17]

      Hudson M R, Queen W L, Mason J A, Fickel D W, Lobo R F, Brown C M. Unconventional, highly selective CO2 adsorption in zeolite SSZ1-3[J]. J. Am. Chem. Soc., 2012,134:1970-1973. doi: 10.1021/ja210580b

    18. [18]

      Gao W Y, Chen Y, Niu Y H, Williams K, Cash L, Perez P J, Wojtas L, Cai J F, Chen Y S, Ma S Q. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions[J]. Angew. Chem. Int. Ed., 2014,53:2615-2619. doi: 10.1002/anie.201309778

    19. [19]

      Xiang S C, He Y B, Zhang Z J, Wu H, Zhou W, Krishna R, Chen B L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nat. Commun., 2012,3954. doi: 10.1038/ncomms1956

    20. [20]

      Nugent P, Belmabkhout Y, Burd S D, Cairns A J, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013,495:80-84. doi: 10.1038/nature11893

    21. [21]

      Lu W, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angew. Chem. Int. Ed., 2012,51:7480-7484. doi: 10.1002/anie.201202176

    22. [22]

      Choi J C, He L N, Yasuda H Y, Sakakura T. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol[J]. Green Chem., 2002,4:230-234. doi: 10.1039/b200623p

    23. [23]

      Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer[J]. Nat. Commun., 2013,41960. doi: 10.1038/ncomms2960

    24. [24]

      Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349:1208-1213. doi: 10.1126/science.aac8343

    25. [25]

      Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc., 1999,121:4526-4527. doi: 10.1021/ja9902165

    26. [26]

      Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry[J]. Chem. Commun., 1997,12:1129-1130.

    27. [27]

      Tang L, Zhang S B, Wu Q L, Wang X R, Wu H, Jiang Z Y. Heterobimetallic metal-organic framework nanocages as highly efficient catalysts for CO2 conversion under mild conditions[J]. J. Mater. Chem. A, 2018,6:2964-2973. doi: 10.1039/C7TA09082J

    28. [28]

      Li P Z, Wang X J, Liu J, Lim J S, Zou R Q, Zhao Y L. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion[J]. J. Am. Chem. Soc., 2016,138:2142-2145. doi: 10.1021/jacs.5b13335

    29. [29]

      PAN W, MA C X, ZHOU C J, ZHANG J Y, SHI Y B, XU H, ZHU D R, XIE J L. Synthesis and characterization of metalorganic framework based on 2, 6-bis (4carboxybenzylidene) cyclo-hexanone[J]. Chinese J. Inorg. Chem., 2021,37(5):953-960.  

    30. [30]

      Song J L, Zhang Z F, Hu S Q, Wu T B, Jiang T, Han B X. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chem., 2009,11:1031-1036. doi: 10.1039/b902550b

    31. [31]

      Kim J, Kim S, Jang H G, Seo G, Ahn W. CO2 Cycloaddition of styrene oxide over MOF catalysts[J]. Appl. Catal. A-Gen., 2013,453175180.

    32. [32]

      Liang J, Chen R P, Wang X Y, Liu T T, Wang X S, Huang Y B, Cao R. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides[J]. Chem. Sci., 2017,8:1570-1575. doi: 10.1039/C6SC04357G

    33. [33]

      Xue Z M, Jiang J Y, Ma M G, Li M F, Mu T C. Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J]. ACS Sustain. Chem. Eng., 2017,5:2623-2631. doi: 10.1021/acssuschemeng.6b02972

    34. [34]

      Parmar B, Patel P, Kureshy R I, Khan N H, Suresh E. Sustainable heterogeneous catalysts for CO2 utilization by using dual ligand Zn/Cd metal-organic frameworks[J]. Chem.-Eur. J., 2018,24:15831-15839. doi: 10.1002/chem.201802387

    35. [35]

      He H M, Sun Q, Gao W Y, Perman J A, Sun F X, Zhu G S, Aguila B, Forrest K, Space B, Ma S Q. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation[J]. Angew. Chem. Int. Ed., 2018,57:4657-4662. doi: 10.1002/anie.201801122

    36. [36]

      Rani P, Husain A, Bhasin K K, Kumar G. Metal-organic framework-based selective molecular recognition of organic amines and fixation of CO2 into cyclic carbonates[J]. Inorg. Chem., 2022,61:6977-6994. doi: 10.1021/acs.inorgchem.2c00367

    37. [37]

      Sun X D, Gu J M, Yuan Y, Yu C Y, Li J T, Shan H Y, Li G H, Liu Y L. A stable mesoporous Zr-Based metal organic framework for highly efficient CO2 conversion[J]. Inorg. Chem., 2019,58:7480-7487. doi: 10.1021/acs.inorgchem.9b00701

    38. [38]

      Das R, Ezhil T, Nagaraja C M. Design of bifunctional zinc(Ⅱ)-organic framework for efficient coupling of CO2 with terminal/internal epoxides under mild conditions[J]. Cryst. Growth Des., 2022,22:598-607. doi: 10.1021/acs.cgd.1c01148

    39. [39]

      Ma C X, Pan W, Zhang J Y, Zeng X H, Gong C H, Xu H T, Shen R P, Zhu D R, Xie J L. Metal-organic frameworks derived from chalcone dicarboxylic acid: New topological characters and initial catalytic properties[J]. Inorg. Chim. Acta, 2022,543121166. doi: 10.1016/j.ica.2022.121166

    40. [40]

      Blatov V A, Ilyushin G D, Blatova O A, Anurova N A, Ivanov-Schits A K, Dem'Yanets L N. Analysis of migration paths in fast-ion conductors with voronoi-dirichlet partition[J]. Acta Crystallogr. Sect. B, 2006,B62:1010-1018.

    41. [41]

      Liang J, Xie Y Q, Wu Q, Wang X Y, Liu T T, Li H F, Huang Y B, Cao R. Zinc porphyrin/imidazolium integrated multivariate zirconium metal-organic frameworks for transformation of CO2 into cyclic carbonates[J]. Inorg. Chem., 2018,57:2584-2593. doi: 10.1021/acs.inorgchem.7b02983

    42. [42]

      Zhou Z, He C, Xiu J H, Yang L, Duan C Y. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc., 2015,137:15066-15069. doi: 10.1021/jacs.5b07925

  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    5. [5]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    9. [9]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    10. [10]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

Metrics
  • PDF Downloads(2)
  • Abstract views(182)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return