Citation: Jing SU, Bingrong LI, Yiyan BAI, Wenjuan JI, Haiying YANG, Zhefeng Fan. Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414 shu

Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores

Figures(8)

  • To design a highly stable and sensitive metal-organic framework (MOF) electrochemical sensor for detecting dopamine (DA), we selected indium-based MOF [In(2-NH3-BDC)(2-NH2-BDC)]·1.5H2O (RSMOF-1, RSMOF=resistance switchable metal-organic framework, 2-NH2-H2BDC=2-amino terephthalic acid) to modify the glassy carbon electrode (RSMOF-1/GCE). The DPV test results of the prepared electrode RSMOF-1/GCE showed a linear range of 0.990-663 μmol·L-1 and a detection limit of 0.770 μmol·L-1. In the presence of various interfering substances (uric acid, urea, glucose, acetaminophen), RSMOF-1/GCE still exhibited high selectivity towards DA. The theoretical simulation results demonstrated that the —NH2 on the inner wall of the RSMOF-1 pore can enhance interaction with DA molecules through hydrogen bonding, indicating its sensitive electrochemical sensing performance for DA.
  • 加载中
    1. [1]

      Li J, Xia J F, Zhang F F, Wang Z, Liu Q. A novel electrochemical sensor based on copper-based metal-organic framework for the determination of dopamine[J]. J. Chin. Chem. Soc., 2018,65(6):743-749. doi: 10.1002/jccs.201700410

    2. [2]

      Dogan, Urhan, Özer, DemirÜ. One-pot electrochemical fabrication of SnO-reduced graphene oxide electrodes for amperometric sensing of dopamine[J]. Maced. J. Chem. Chem. Eng., 2021,40(2)299306.

    3. [3]

      You Q N, Guo Z Y, Zhang R, Chang Z M, Ge M F, Mei Q, Dong W F. Simultaneous recognition of dopamine and uric acid in the presence of ascorbic acid via an intercalated MXene/PPy nanocomposite[J]. Sensors, 2021,21(9):3069-3080. doi: 10.3390/s21093069

    4. [4]

      Panapimonlawat T, Phanichphant S, Sriwichai S. Electrochemical dopamine biosensor based on poly (3-aminobenzylamine) layer-by-layer self-assembled multilayer thin film[J]. Polymers, 2021,13(9):1488-1504. doi: 10.3390/polym13091488

    5. [5]

      Kumar E A, Chen T W, Chen S M, Wang T J, Anthuvan A J, AlOmar S Y, Ahmad N, Chang Y H. A disposable electrochemical sensor based on iron molybdate for the analysis of dopamine in biological samples[J]. New J. Chem., 2021,45(26):11644-11651. doi: 10.1039/D1NJ01718G

    6. [6]

      Duraisamy V, Sudha V, Annadurai K, Kumar S M S, Thangamuthu R. Ultrasensitive simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen on a graphitized porous carbon-modified electrode[J]. New J. Chem., 2021,45(4):1863-1875. doi: 10.1039/D0NJ04806B

    7. [7]

      Azizpour Moallem Q, Beitollahi H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks[J]. Microchem. J., 2022,177107261. doi: 10.1016/j.microc.2022.107261

    8. [8]

      Fang J J, Yang N N, Gao E Q. Making metal-organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine[J]. Electrochem. Commun., 2018,89:32-37. doi: 10.1016/j.elecom.2018.02.014

    9. [9]

      Roychoudhury A, Francis K A, Patel J, Jha S K, Basu S. A decouplerfree simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin[J]. RSC Adv., 2020,10(43):25487-25495. doi: 10.1039/D0RA03526B

    10. [10]

      Ramadan M A A, Almasri I, Khayal G. Spectrophotometric determination of dopamine in bulk and dosage forms using 2, 4-dinitro-phenylhydrazine[J]. Turk. J. Pharm. Sci., 2020,17(6):679-685. doi: 10.4274/tjps.galenos.2019.25902

    11. [11]

      Yue J Y, Song L P, Wang Y T, Yang P, Ma Y, Tang B. Fluorescence/colorimetry/smartphone triple-mode sensing of dopamine by a COF-based peroxidase-mimic platform[J]. Anal. Chem., 2022,94(41):14419-14425. doi: 10.1021/acs.analchem.2c03179

    12. [12]

      Dey M K, Satpati A K. Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid[J]. J. Electroanal. Chem., 2017,787:95-102. doi: 10.1016/j.jelechem.2017.01.035

    13. [13]

      Zhou Y, Li R C, Zhang G M, Zhang Y, Zhang C, Shuang S. A novel electrochemical sensor based on AuPd/UiO-66-NH2/GN composites for sensitive dopamine detection[J]. Analyst, 2022,147(24):5655-5662. doi: 10.1039/D2AN01538B

    14. [14]

      Ma J P, Chen G Z, Bai W S, Zheng J. Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal-organic framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58105-58112. doi: 10.1021/acsami.0c09254

    15. [15]

      Kujawska M, Bhardwaj S K, Mishra Y K, Kaushik A. Using graphenebased biosensors to detect dopamine for efficient Parkinson's disease diagnostics[J]. Biosensors, 2021,11(11):433-446. doi: 10.3390/bios11110433

    16. [16]

      FANG Z L, WANG P, LIU S D, WANG X, NIE Q X, YANG S M, XU W Y, ZHOU M H. Simultaneous detection of dopamine and uric acid based on chiral MOF and acetylene black modified electrode[J]. Chinese J. Inorg. Chem., 2020,36(1):139-147.  

    17. [17]

      Liu J, Ma Q, Huang Z, Liu G, Zhang H. Recent progress in graphenebased noble-metal nanocomposites for electrocatalytic applications[J]. Adv. Mater., 2019,31(9)1800696. doi: 10.1002/adma.201800696

    18. [18]

      XU P, QIU H X, SONG L Z, YANG T L, LI X J. Preparation of graphene/metal nanocomposites and its research progress[J]. Nonferrous Metal Materials and Engineering, 2017,38(3):177-184.  

    19. [19]

      XU K L, XU X W, LI L Y, XIA Y, XIE Y W. Research progress of carbon nanotubes (CNTs)/polymer nanocomposites[J]. Journal of Capital Normal University (Natural Sciences Edition), 2019,40(5):8488-88.  

    20. [20]

      Dong Y H, Zheng J B, Xing J, Zhao T, Peng S. In situ synthesis of gold nanoparticle on MIL-101(Cr)-NH2 for non-enzymatic dopamine sensing[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,650129618. doi: 10.1016/j.colsurfa.2022.129618

    21. [21]

      Hira S A, Nagappan S, Annas D, Kumar Y A, Park K H. NO2-func-tionalized metal-organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine[J]. Electrochem. Commun., 2021,125107012. doi: 10.1016/j.elecom.2021.107012

    22. [22]

      Direksilp C, Scheiger J M, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly (N-meth-ylaniline) composite[J]. Anal. Methods, 2022,14(4):469-479. doi: 10.1039/D1AY01943K

    23. [23]

      Hu C, Pan P, Huang H P, Liu H. Cr-MOF-based electrochemical sensor for the detection of p-nitrophenol[J]. Biosensors, 2022,12(10)813820.

    24. [24]

      Xue W, Wang Y, Guo L, Zhang H. Zr-MOF functionalized nanochannels: Application to regenerative and sensitive electrochemical aptasensing platform[J]. Sens. Actuator B-Chem., 2023,381133455. doi: 10.1016/j.snb.2023.133455

    25. [25]

      Fan W D, Liu X P, Wang X, Li Y, Xing C, Wang Y T, Guo W Y, Zhang L L, Sun D. A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation[J]. Inorg. Chem. Front., 2018,5(10):2445-2449. doi: 10.1039/C8QI00652K

    26. [26]

      Pan L, Liu G, Li H, Meng S, Han L, Shang J, Li R W. A resistance-switchable and ferroelectric metal-organic framework[J]. J. Am. Chem. Soc., 2014,136(50):17477-17483. doi: 10.1021/ja508592f

    27. [27]

      Wu F, Fang W, Yang X Y, Xu J J, Wang Z. Twodimensional π-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing[J]. J. Chin. Chem. Soc., 2019,66(5):522-528. doi: 10.1002/jccs.201800198

    28. [28]

      Liu X, Cui G N, Dong L M, Wang X M, Zhen Q F, Sun Y, Ma S, Zhang C J, Pang H J. Synchronous electrochemical detection of dopamine and uric acid by a PMo12@MIL-100(Fe)@PVP nanocomposite[J]. Anal. Biochem., 2022,648114670. doi: 10.1016/j.ab.2022.114670

    29. [29]

      Dehdashtian S, Hashemi B, Chegeni M, Aeenmehr A. The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal-organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin[J]. IEEE Sens. J., 2019,19(24):11739-11745. doi: 10.1109/JSEN.2019.2937400

    30. [30]

      Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2011,33(5):580-592.

    31. [31]

      Li Y, Wang F, Huang F, Li Y, Feng S. Direct electrochemistry of glucose oxidase and its biosensing to glucose based on the Chit-MWCNTs-AuNRs modified gold electrode[J]. J. Electroanal. Chem., 2012,685:86-90. doi: 10.1016/j.jelechem.2012.08.028

    32. [32]

      He Q G, Liu J, Liu X P, Li G, Chen D, Deng P, Liang J. A promising sensing platform to ward dopamine using MnO nanowires/electro-reduced graphene oxide composites[J]. Electrochim. Acta, 2019,296:683-692. doi: 10.1016/j.electacta.2018.11.096

    33. [33]

      Khoshraftar R, Shishehbore M R, Sheibani A. Synthesis and characterization of graphene oxideCu NPs-Fe-MOF nanocomposite and its application to simultaneous determination of Eskazina and dopamine in real samples[J]. J. Electroanal. Chem., 2022,926116945. doi: 10.1016/j.jelechem.2022.116945

    34. [34]

      Shen C H, Chang Y N, Chen Y L, Kung C W. Sulfonate-grafted metalorganic framework-A porous alternative to Nafion for electrochemical sensors[J]. ACS Mater. Lett., 2023,5(7):1938-1943. doi: 10.1021/acsmaterialslett.3c00389

    35. [35]

      Gayathri P, Sakshi , Ramanujam K. Redox active cobalt-bipyridine metal organic framework-Nafion coated carbon nanotubes for sensing ascorbic acid[J]. J. Electrochem. Soc., 2018,165(13):B603-B609. doi: 10.1149/2.0661813jes

    36. [36]

      Ma Y, Zhang Y L, Wang L S. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid[J]. Talanta, 2021,226122105. doi: 10.1016/j.talanta.2021.122105

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return