Citation: Yu ZHANG, Fangfang ZHAO, Cong PAN, Peng WANG, Liangming WEI. Application of double-side modified separator with hollow carbon material in high-performance Li-S battery[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412 shu

Application of double-side modified separator with hollow carbon material in high-performance Li-S battery

Figures(7)

  • To reduce the "shuttle effects" of lithium polysulfides (LIPs) and the lithium dendrites in Li-S batteries, the separator modified by hollow carbon material was prepared by the simple scraping method. It can be found from the contact angle tests that the layers formed by the porous carbon of uniform width exhibited both stronger attractions to LIPs and better permeability of electrolytes than the bare polypropylene (PP) separator. Permeation tests further showed an effective block over LIPs by the modification layers. Cathode symmetrical batteries with Celgard 3501 separator were assembled and the current response tests implied a conversion of LIPs to Li2S catalyzed by hollow carbon materials. Lithium symmetrical batteries with modified separators were assembled and the voltage-time profile of charge-discharge processes showed better stability owing to the prevention of lithium dendrites. The Li-S batteries were assembled with sulfur loading of 1.8-2.0 mg·cm-2 and with the bare PP, single-side modified, and double-side modified separators. Calculations of the diffusion coefficient of lithium-ion from galvanostatic intermittent titration technique (GITT) tests and Nyquist plots both indicated the faster ion transportation for the modified separators. Smaller semicircles for impedance were also found in the plots. Nyquist plots after the 1st, 5th, 10th, 50th, and 100th cycles were analyzed to show a stable diffusion behavior of lithium ions, which should be caused by the multichannel from hollow carbon material to provide more paths for Li+ ion transportation. Li-S batteries with double-side modified separators presented a high specific capacity of 1 035 mAh·g-1 in the first cycle and 500 mAh·g-1 after 700 cycles at the current density of 0.2C, 630 mAh·g-1 after 100 cycles at 1C, and 505 mAh·g-1 after 100 cycles at 2C. The rate performance also behaved superior to the cells with bare PP as the separator. The cell assembled with higher sulfur content (3.2 mg·cm-2) also presented the reverse specific capacity of 500 mAh·g-1 at 0.2C. These battery performances could be ascribed to the porous hollow carbon materials for their adsorption and conversion of LIPs and their prevention of dendrites. Thus, the physicochemical interaction between hollow carbon and LIPs effectively alleviates the shuttle effect and the bifunctional modification of the separator could prevent the growth of lithium dendrites to improve the safety of the Li-S batteries.
  • 加载中
    1. [1]

      Sungjemmenla , Soni C B, Vineeth S K, Kumar V. Exploration of the unique structural chemistry of sulfur cathode for high-energy rechargeable beyond-Li batteries[J]. Adv. Energy Sustain. Res., 2021,3(5)2100157.

    2. [2]

      Ma L B, Lv Y H, Wu J X, Chen Y M, Jin Z. Recent advances in emerging non-lithium metal-sulfur batteries: A review[J]. Adv. Energy Mater., 2021,11(24)2100770. doi: 10.1002/aenm.202100770

    3. [3]

      ZHANG W, LIANG H S, ZHU K R, TIAN Y, LIU Y, CHEN J Y, LI W. Three-dimensional macro-/mesoporous C-TiC nanocomposites for dendrite-free lithium metal anode[J]. Acta Phys.-Chim. Sin., 2024,38(6)2105024.  

    4. [4]

      Zuo Y Z, Yan T, Zhu Y J, Zhou J, Su W M, Shi X L, Tang Y F, Chen Y F. MnO2 nanoflowers grown on a polypropylene separator for use as both a barrier and an accelerator of polysulfides for high-performance Li-S batteries[J]. Dalton Trans., 2020,49(28):9719-9727. doi: 10.1039/D0DT01435D

    5. [5]

      Zeng P, Chen M F, Jiang S X, Li Y F, Xie X, Liu H, Hu X Y, Wu C, Shu H B, Wang X Y. Architecture and performance of the novel sulfur host material based on Ti2O3 microspheres for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019,11(25):22439-22448. doi: 10.1021/acsami.9b05874

    6. [6]

      Chen M F, Wang X Y, Cai S Y, Ma Z Y, Song P, Fisher A C. Enhancing the performance of lithium-sulfur batteries by anchoring polar polymers on the surface of sulfur host materials[J]. J. Mater. Chem. A, 2016,4(41):16148-16156. doi: 10.1039/C6TA06863D

    7. [7]

      Zhang Y, Ma L, Tang R X, Zhao F F, Niu S L, Su W D, Pan C, Wei L M. Hollow carbon nanospheres coated by δ-MnO2 as S host to enhance the catalytic conversion of polysulfides in Li-S batteries[J]. Appl. Surf. Sci., 2022,585152498. doi: 10.1016/j.apsusc.2022.152498

    8. [8]

      Du Z L, Lei Z P, Yan H L, Wang D D, Wang J C, Yan J C, Li Z K, Shui H F, Ren S B, Wang Z C, Kong Y. HNO3 pre-oxidation-tuned microstructures of porous carbon derived from high-sulfur coal for enhancing capture and catalytic conversion of polysulfides[J]. Fuel, 2022,326125066. doi: 10.1016/j.fuel.2022.125066

    9. [9]

      WANG X W. Layered hexagonal Co1-xS decorating N-doped carbon nanotubes as a sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem., 2022,38(10):2065-2071. doi: 10.11862/CJIC.2022.180

    10. [10]

      SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.  

    11. [11]

      Tian D, Song X Q, Wang M X, Wu X, Qiu Y, Guan B, Xu X Z, Fan L S, Zhang N Q, Sun K N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries[J]. Adv. Energy Mater., 2019,9(46)1901940. doi: 10.1002/aenm.201901940

    12. [12]

      Wang X M, Zhang H G, Jiao H, Zhang X R, Shen Z H, Wen Y, He Q Y, Yao J, Cheng H T, Gao T, Wang X, Zhang H, Jiao H. CrP nanocatalyst within porous MOF architecture to accelerate polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(17):21040-21048. doi: 10.1021/acsami.3c01427

    13. [13]

      Yoshida L, Hakari T, Matsui Y, Ishikawa M. Polyglycerol-functionalized microporous carbon/sulfur cathode for Li-S battery[J]. Electrochim. Acta, 2022,429141000. doi: 10.1016/j.electacta.2022.141000

    14. [14]

      Li R X, Dai Y, Zhu W K, Xiao M, Dong Z W, Yu Z, Xiao H B, Yang T. Construction of porous carbon nanofibers with encapsulated sulfur as free-standing cathode material of lithium-sulfur batteries[J]. Ionics, 2022,28(5):2155-2162. doi: 10.1007/s11581-022-04476-9

    15. [15]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 hollow spheres as high efficient sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    16. [16]

      Wei C L, Wang Y S, Zhang Y C, Tan L W, Qian Y, Tao Y, Xiong S L, Feng J K. Flexible and stable 3D lithium metal anodes based on self-standing Mxene/COF frameworks for high-performance lithium-sulfur batteries[J]. Nano Res., 2021,14(10):3576-3584. doi: 10.1007/s12274-021-3433-9

    17. [17]

      Zhou C, Hong M, Hu N T, Yang J H, Zhu W H, Kong L W, Li M. Bi-metallic coupling-induced electronic-state modulation of metal phosphides for kinetics-enhanced and dendrite-free Li-S batteries[J]. Adv. Funct. Mater., 2023,33(14)2213310. doi: 10.1002/adfm.202213310

    18. [18]

      Yang C, You C Y, Zhang J, Yang R, Tian N, Ma L. Lithium-magnesium alloy as an anode for lithium-sulfur based batteries[J]. Int. J. Electrochem. Sci., 2019,14(9):8595-8600. doi: 10.20964/2019.09.25

    19. [19]

      Liang X, Wen Z Y, Liu Y, Wu M F, Jin J, Zhang H, Wu X W. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. J. Power Sources, 2011,196(22):9839-9843. doi: 10.1016/j.jpowsour.2011.08.027

    20. [20]

      Xu R, Li J C M, Lu J, Amine K, Belharouak I. Demonstration of highly efficient lithium-sulfur batteries[J]. J. Mater. Chem. A, 2015,3(8):4170-4179. doi: 10.1039/C4TA06641C

    21. [21]

      Zhang L, Ling M, Feng J, Mai L Q, Liu G, Guo J H. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries[J]. Energy Storage Mater., 2018,11:24-29. doi: 10.1016/j.ensm.2017.09.001

    22. [22]

      Hu B, Ding B, Xu C, Fan Z J, Luo D R, Li P, Dou H, Zhang X G. Fabrication of a covalent triazine framework functional interlayer for high-performance lithium-sulfur batteries[J]. Nanomaterials, 2022,12(2)255. doi: 10.3390/nano12020255

    23. [23]

      Chen D L, Zhu M, Zhan W W, Long L, Yu L, Zhu T, Kang P B, Yang X P, Sui G. Fe, N co-doped mesoporous carbon spheres as barrier layer absorbing and reutilizing polysulfides for high-performance Li-S batteries[J]. J. Mater. Sci., 2022,57(28):13527-13540.

    24. [24]

      Wang X, Yang L W, Li R, Chen Y X, Wu Z G, Zhong B H, Guo X D. Heteroatom-doped ginkgo folium porous carbon modified separator for high-capacity and long-cycle lithium-sulfur batteries[J]. Appl. Surf. Sci., 2022,602154342. doi: 10.1016/j.apsusc.2022.154342

    25. [25]

      Tan T X, Chen N N, Wang Z K, Tang Z M, Zhang H R, Lai Q X, Liang Y Y. Thorn-like carbon nanofibers combined with molybdenum nitride nanosheets as a modified separator coating: An efficient chemical anchor and catalyst for Li-S batteries[J]. ACS Appl. Energy Mater., 2022,5(6):6654-6662. doi: 10.1021/acsaem.2c00080

    26. [26]

      YANG X B, HU X N, SUN X. Effect of acetylene black coating on properties of lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2021,37(12):2203-2208. doi: 10.11862/CJIC.2021.248

    27. [27]

      Liu C, Yin Z J, Deng H, Liu C, Zhao J, Lan Q, Tang S, Liang J, Cheng Q, Liu J, Cao Y C, Liu Z. Nitrogen-doped porous carbon as high-performance cathode material for lithium-sulfur battery[J]. ChemistrySelect, 2017,2(34):11030-11034. doi: 10.1002/slct.201702228

    28. [28]

      Hu X Q, Shen K M, Han C, Li M Y, Guo J, Yan M Y, Zhang M A. Rational design of ultrathin Mo2C/C nanosheets decorated on mesoporous hollow carbon spheres as a multifunctional sulfur host for advanced Li-S batteries[J]. J. Alloy. Compd., 2022,918165667. doi: 10.1016/j.jallcom.2022.165667

    29. [29]

      Zhang Y, Tang R X, Ma L, Zhao F F, Tang G, Wang Y, Pan C, Pang A M, Li W, Wei L M. Nitrogen-doped hollow carbon boosting the anchoring of sulfur capacity for high-loading lithium-sulfur batteries[J]. Microporous Mesoporous Mater., 2022,335111837. doi: 10.1016/j.micromeso.2022.111837

    30. [30]

      Zhang W, Zhang J F, Zhao Y, Wang X. Multi-functional carbon cloth infused with N-doped and co-coated carbon nanofibers as a current collector for ultra-stable lithium-sulfur batteries[J]. Mater. Lett., 2019,255126595. doi: 10.1016/j.matlet.2019.126595

    31. [31]

      Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat. Nanotechnol., 2016,11(7):626-632. doi: 10.1038/nnano.2016.32

    32. [32]

      Aslam M K, Jamil S, Hussain S, Xu M W. Effects of catalysis and separator functionalization on high-energy lithium-sulfur batteries: A complete review[J]. Energy Environ. Mater., 2023,6(3)e12420. doi: 10.1002/eem2.12420

    33. [33]

      Ren W C, Zheng Y N, Cui Z H, Tao Y S, Li B X, Wang W T. Recent progress of functional separators in dendrite inhibition for lithium metal batteries[J]. Energy Storage Mater., 2021,35:157-168. doi: 10.1016/j.ensm.2020.11.019

    34. [34]

      Baik S, Park J H, Lee J W. One-pot conversion of carbon dioxide to CNT-grafted graphene bifunctional for sulfur cathode and thin interlayer of Li-S battery[J]. Electrochim. Acta, 2020,330135264. doi: 10.1016/j.electacta.2019.135264

    35. [35]

      Pang Y, Wei J S, Wang Y G, Xia Y Y. Synergetic protective effect of the ultralight mwcnts/ncqds modified separator for highly stable lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(10)1702288. doi: 10.1002/aenm.201702288

    36. [36]

      Cai W L, Li G R, He F, Jin L M, Liu B H, Li Z P. A novel laminated separator with multi functions for high-rate dischargeable lithium-sulfur batteries[J]. J. Power Sources, 2015,283:524-529. doi: 10.1016/j.jpowsour.2015.03.085

    37. [37]

      Chung S H, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. J. Phys. Chem. Lett., 2014,5(11):1978-1983. doi: 10.1021/jz5006913

    38. [38]

      Zhao T, Ye Y, Peng X, Divitini G, Kim H K, Lao C Y, Coxon P R, Xi K, Liu Y J, Ducati C, Chen R, Kumar R V. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush[J]. Adv. Funct. Mater., 2016,26(46):8418-8426. doi: 10.1002/adfm.201604069

    39. [39]

      Zhu J D, Ge Y Q, Kim D, Lu Y, Chen C, Jiang M J, Zhang X W. A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries[J]. Nano Energy, 2016,20:176-184. doi: 10.1016/j.nanoen.2015.12.022

    40. [40]

      Vizintin A, Lozinšek M, Chellappan R K, Foix D, Krajnc A, Mali G, Drazic G, Genorio B, Dedryvère R, Dominko R. Fluorinated reduced graphene oxide as an interlayer in Li-S batteries[J]. Chem. Mater., 2015,27(20):7070-7081. doi: 10.1021/acs.chemmater.5b02906

    41. [41]

      Yang K, Zhong L, Guan R T, Xiao M, Han D M, Wang S J, Meng Y Z. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries[J]. Appl. Surf. Sci., 2018,441:914-922. doi: 10.1016/j.apsusc.2018.02.108

    42. [42]

      Li S Q, Ren G F, Hoque M N F, Dong Z H, Warzywoda J, Fan Z Y. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries[J]. Appl. Surf. Sci., 2017,396:637-643. doi: 10.1016/j.apsusc.2016.10.208

    43. [43]

      Hou J, Cao T, Idrees F, Cao C. A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells[J]. Nanoscale, 2016,8(1):451-457. doi: 10.1039/C5NR06279A

    44. [44]

      Jiang S X, Chen M F, Wang X Y, Zeng P, Li Y F, Liu H, Li X L, Huang C, Shu H B, Luo Z G, Wu C. A tin disulfide nanosheet wrapped with interconnected carbon nanotube networks for application of lithium sulfur batteries[J]. Electrochim. Acta, 2019,313:151-160. doi: 10.1016/j.electacta.2019.05.001

    45. [45]

      Yao W Q, Zheng W Z, Xu J, Tian C X, Han K, Sun W Z, Xiao S X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021,15(4):7114-7130. doi: 10.1021/acsnano.1c00270

    46. [46]

      Guo P Q, Sun K, Shang X N, Liu D Q, Wang Y R, Liu Q M, Fu Y J, He D Y. Nb2O5/rGO nanocomposite modified separators with robust polysulfide traps and catalytic centers for boosting performance of lithium-sulfur batteries[J]. Small, 2019,15(40)1902363. doi: 10.1002/smll.201902363

    47. [47]

      Hu N N, Lv X S, Dai Y, Fan L L, Xiong D B, Li X F. SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li-S batteries[J]. ACS Appl. Mater. Interfaces, 2018,10(22):18665-18674. doi: 10.1021/acsami.8b03255

    48. [48]

      Chen X, Huang Y D, Li J, Wang X C, Zhang Y, Guo Y, Ding J, Wang L. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries[J]. J. Colloid Interface Sci., 2020,559:13-20. doi: 10.1016/j.jcis.2019.10.001

    49. [49]

      Wang X Y, Hao H, Liu J L, Huang T, Yu A S. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochim. Acta, 2011,56(11):4065-4069. doi: 10.1016/j.electacta.2010.12.108

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    5. [5]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    8. [8]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    9. [9]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    10. [10]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    11. [11]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    12. [12]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    13. [13]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    14. [14]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    15. [15]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    16. [16]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    17. [17]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    18. [18]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return