Citation: Chao WANG, Dongmei HE, Yu GUAN, Jiayi XU, Limin ZHENG, Yuejian LIN, Zhenxia CHEN, Kai LIANG. Self-assembly of zero-dimensional cluster {[Cu6(H2tba)6]·2DMF·xSolvent}, 2D sheet {[Sc(H2tba)3(DMF)]·2DMF}n and 3D network {[Fe(H2tba)2(H2O)2]·2DMF}n based on 2-thiobarbituric acid[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 263-269. doi: 10.11862/CJIC.20230396 shu

Self-assembly of zero-dimensional cluster {[Cu6(H2tba)6]·2DMF·xSolvent}, 2D sheet {[Sc(H2tba)3(DMF)]·2DMF}n and 3D network {[Fe(H2tba)2(H2O)2]·2DMF}n based on 2-thiobarbituric acid

  • Corresponding author: Kai LIANG, kliang@dhu.edu.cn
  • Received Date: 20 October 2023
    Revised Date: 12 December 2023

Figures(6)

  • Three complexes with different structures, namely {[Cu6(H2tba)6]·2DMF·xSolvent} (1), {[Sc(H2tba)3(DMF)]·2DMF}n (2), and {[Fe(H2tba)2(H2O)2]·2DMF}n (3) (DMF=N, N-dimethylformamide), were obtained through diffusion reactions using Cu(ClO4)2·6H2O, Sc(ClO4)3·6H2O, and Fe(ClO4)3·9H2O as metal salts, respectively, and 2-thiobarbituric acid (H3tba) as ligand. Complexes 1-3 were further characterized by FTIR, elemental analysis, TGA, and powder X-ray diffraction techniques. Single-crystal X-ray diffraction analysis reveals that complex 1 is a hexa-copper cluster with a trigonal antiprism structure, complex 2 is a 2D sheet structure, and complex 3 is a 3D network structure. Complex 1 exhibited strong luminescent emission spectra at 735 nm with an excitation peak at 390 nm.
  • 加载中
    1. [1]

      Méndez E, Cerdá M F, Gancheff J S, Torres J, Kremer C, Castiglioni J, Kieninger M, Ventura O N. Tautomeric forms of 2-thiobarbituric acid as studied in the solid, in polar solutions, and on gold nanoparticles[J]. J. Phys. Chem. C, 2007,111:3369-3383.

    2. [2]

      Chierotti M R, Ferrero L, Garino N, Gobetto R, Luca Pellegrino, Braga D, Grepioni F, Maini L. The richest collection of tautomeric polymorphs: The case of 2-thiobarbituric acid[J]. Chem.-Eur. J., 2010,16:4347-4358. doi: 10.1002/chem.200902485

    3. [3]

      Dhasmana A, Barthwal J P, Pandey B R, Ali B, Bhargava K P, Parmar S S. Anticonvulsant activity and succinate dehydrogenase inhibitory property of new substituted thiobarbiturates[J]. J. Heterocycl. Chem., 1981,18(3):635-637. doi: 10.1002/jhet.5570180341

    4. [4]

      Balas V I, Hadjikakou S K, Hadjiliadis N, Kourkoumelis N, Light M E, Hursthouse M, Metsios A K, Karkabounas S. Crystal structure and antitumor activity of the novel zwitterionic complex of tri-n-butyltin(Ⅳ) with 2-thiobarbituric acid[J]. Bioinorg. Chem. Appl., 2008. doi: 10.1155/2008/654137

    5. [5]

      Golovnev N N, Molokeev M S. Bridging behaviour of the 2-thiobarbiturate anion in its complexes with Li and Na[J]. Acta Crystallogr. Sect. C, 2013,C69(7):704-708.

    6. [6]

      Golovnev N N, Molokeev M S. Crystal structures of cesium and rubidium 2-thiobarbiturates[J]. Russ. J. Inorg. Chem., 2014,59(9):943-946. doi: 10.1134/S003602361409006X

    7. [7]

      Golovnev N N, Molokeev M S. Crystal structures of two barium 2-thiobarbiturate complexes[J]. J. Struct. Chem., 2014,55(5):871-878. doi: 10.1134/S0022476614050114

    8. [8]

      Golovnev N N, Molokeev M S, Vereshchagin S N. Calcium and strontium thiobarbiturates with discrete and polymeric structures[J]. J. Coord. Chem., 2013,66(23):4119-4130. doi: 10.1080/00958972.2013.860450

    9. [9]

      Golovnev N N, Molokeev M S, Vereshchagin S N, Atuchin V V, Sidorenko M Y, Dmitrushkov M S. Crystal structure and properties of the precursor [Ni(H2O)6](TBA)2·2H2O and the complexes M(TBA)2(H2O)2 (M=Ni, Co, Fe)[J]. Polyhedron, 2014,70:71-76. doi: 10.1016/j.poly.2013.12.021

    10. [10]

      Golovnev N N, Molokeev M S. Crystal structure of catena-bis (2-thiobarbiturato-O, S)diaquacadmium[J]. Russ. J. Inorg. Chem., 2013,58(10):1193-1196. doi: 10.1134/S0036023613100094

    11. [11]

      Golovnev N N, Molokeev M S. Crystal structure of catena-di(2-thiobarbiturato-O, S)aqualead(Ⅱ)[J]. J. Struct. Chem., 2017,54(5):968-971.

    12. [12]

      Golovnev N N, Molokeev M S. Crystal structure of polymer hexaaqua-hexakis-(2-thiobarbiturato)dieuropium(Ⅲ)[J]. Russ. J. Coord. Chem., 2014,40(9):648-652. doi: 10.1134/S1070328414090036

    13. [13]

      Golovnev N N, Molokeev M S, Sterkhova I V, Vereshchagin S N, Golovneva I I. Crystal structure and properties of polymeric hexaaqua-hexakis-(2-thiobarbiturato)disamarium(Ⅲ)[J]. J. Struct. Chem., 2017,58(3):539-543. doi: 10.1134/S0022476617030155

    14. [14]

      Golovnev N N, Molokeev M S, Sterkhova I V. Structure and thermal decomposition of Nd(Ⅲ), Gd(Ⅲ) and Tb(Ⅲ) 2-thiobarbiturates[J]. Russ. J. Inorg. Chem., 2019,64(9):1146-1151. doi: 10.1134/S0036023619090134

    15. [15]

      Golovnev N N, Molokeev M S, Lesnikov M K. Hydrates of lanthanide (Ⅲ) 2-thiobarbiturates: Synthesis, structure and thermal decomposition[J]. Russ. J. Inorg. Chem., 2020,65(7):999-1005. doi: 10.1134/S0036023620070098

    16. [16]

      Hunks W J, Jennings M C, Puddephatt R J. Supramolecular gold (Ⅰ) thiobarbiturate chemistry: Combining aurophilicity and hydrogen bonding to make polymers, sheets, and networks[J]. Inorg. Chem., 2002,41:4590-4598. doi: 10.1021/ic020178h

    17. [17]

      Pan Z R, Zhang Y C, Song Y L, Zhuo X, Li Y Z, Zheng H G. Synthesis, structure and nonlinear optical properties of three dimensional compounds[J]. J. Coord. Chem., 2008,61:3189-3199. doi: 10.1080/00958970802020673

    18. [18]

      Gong Y, Hao Z, Li J H, Wu T, Lin J H. Mg(Ⅱ)-induced second-harmonic generation based on bis-monodentate coordination mode of thiobarbiturate[J]. Dalton Trans., 2013,42:6489-6494. doi: 10.1039/c3dt32380c

    19. [19]

      Wa ng, C , Zh ou, M S, Ya ng, L J, Liang , K , Z hu, Z J, Ch en, Z X. Synthesis, structure and luminescent properties of a 2D cobalt (Ⅱ) coordination polymer based on 2-thiobarbituric acid[J]. Chin. J. Struct. Chem., 2017,36(7):1210-1215.

    20. [20]

      Sheldrick G M. SHELXTL 97, Program for the refinement of crystal structure. University of Göttingen, Germany, 1997.

    21. [21]

      Spek A L. Platon squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors[J]. Acta Crystallogr. Sect. C, 2015,C71:9-18.

    22. [22]

      Yam V W W, Lo K K W. Luminescent polynuclear d10 metal complexes[J]. Chem. Soc. Rev., 1999,28:323-334. doi: 10.1039/a804249g

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    14. [14]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    15. [15]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    16. [16]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    19. [19]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    20. [20]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

Metrics
  • PDF Downloads(2)
  • Abstract views(294)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return