Citation: Ge ZHANG, Wenjiang YANG, Yu LIU. Advances in positron emission tomography imaging tracers for the central dopamine system[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 54-70. doi: 10.11862/CJIC.20230387 shu

Advances in positron emission tomography imaging tracers for the central dopamine system

Figures(11)

  • The central dopamine system plays a crucial role in the pathophysiology of various neurobehavioral disorders. Positron emission tomography (PET) imaging has been instrumental in studying dopamine biochemical processes in the living brain. PET imaging utilizes positron-emitting radionuclide 11C/18F-labelled tracers to assess dopamine synthesis, vesicle storage, synaptic release, receptor binding, and reuptake processes by binding to specific targets in the dopamine nervous system. This advancement has significantly contributed to research in neurology, psychiatry, drug abuse and addiction, and therapeutic drug development. This article provides a comprehensive review of the progress in 11C/18F-labelled PET imaging agents targeting amino acid decarboxylase, dopamine transporters, dopamine receptors, and vesicular monoamine transporters.
  • 加载中
    1. [1]

      Zhang A, Neumeyer J L, Baldessarini R J. Recent progress in development of dopamine receptor subtype-selective agents: Potential thera-peutics for neurological and psychiatric disorders[J]. Chem. Rev., 2007,107(1):274-302. doi: 10.1021/cr050263h

    2. [2]

      Sioka C, Fotopoulos A, Kyritsis A P. Recent advances in PET imaging for evaluation of Parkinson's disease[J]. Eur. J. Nucl. Med. Mol. Imag., 2010,37(8):1594-1603. doi: 10.1007/s00259-009-1357-9

    3. [3]

      Ametamey S M, Honer M, Schubiger P A. Molecular imaging with PET[J]. Chem. Rev., 2008,108(5):1501-1516. doi: 10.1021/cr0782426

    4. [4]

      Raviña E, Negreira J, Cid J, Masaguer C F, Rosa E, Rivas M E, Fontenla J A, Loza M I, Tristán H, Cadavid M I, Sanz F, Lozoya E, Carotti A, Carrieri A. Conformationally constrained butyrophenones with mixed dopaminergic (D2) and serotoninergic (5-HT2A, 5-HT2C) affinities: Synthesis, pharmacology, 3D-QSAR, and molecular modeling of (aminoalkyl) benzo-and-thienocycloalkanones as putative atypical antipsychotics[J]. J. Med. Chem., 2000,43(6):1250-1250. doi: 10.1021/jm9911837

    5. [5]

      De P, Roy K. QSAR modeling of PET imaging agents for the diagnosis of Parkinson's disease targeting dopamine receptor[J]. Theor. Chem. Acc., 2020,139(12)176. doi: 10.1007/s00214-020-02687-9

    6. [6]

      Kilbourn M R. 11C-and 18F-radiotracers for in vivo imaging of the dopamine system: Past, present and future[J]. Biomedicines, 2021,9(2)108. doi: 10.3390/biomedicines9020108

    7. [7]

      Libert L C, Franci X, Plenevaux A R, Ooi T, Maruoka K, Luxen A J, Lemaire C F. Production at the curie level of no-carrier-added 6-[18F] fluoro-L-DOP[J]. J. Nucl. Med., 2013,54(7):1154-1161. doi: 10.2967/jnumed.112.112284

    8. [8]

      Neves A C B, Hrynchak I, Fonseca I, Alves V H P, Pereira M M, Falcao A, Abrunhosa A J. Advances in the automated synthesis of 6-18F fluoro-L-DOPA[J]. EJNMMI Radiopharm. Chem., 2021,6(1)18. doi: 10.1186/s41181-021-00132-1

    9. [9]

      ZUO C T. The Applications of 18F-DOPA PET in Parkinson's disease[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2000,24(1):4-7.

    10. [10]

      Doudet D J, Mclellan C A, Carson R, Adams H R, Miyake H, Aigner T G, Finn R T, Cohen R M. Distribution and kinetics of 3-O-methyl-6-[18F]fluoro-L-DOPA in the rhesus monkey brain[J]. J. Cereb. Blood Flow Metab., 1991,11(5):726-734. doi: 10.1038/jcbfm.1991.129

    11. [11]

      Huang S C, Yu D C, Barrio J R, Grafton S, Melega W P, Hoffman J M, Satyamurthy N, Mazziotta J C, Phelps M E. Phelps M E. Kinetics and modeling of L-6-[18F]fluoro-DOPA in human positron emission tomographic studies[J]. J. Cereb. Blood Flow Metab., 1991,11(6):898-913. doi: 10.1038/jcbfm.1991.155

    12. [12]

      Morrish P K, Sawle G V, Brooks D J. Regional changes in[18F] DOPA metabolism in the striatum in Parkinson's disease[J]. Brain, 1996,119(6):2097-2103. doi: 10.1093/brain/119.6.2097

    13. [13]

      Morrish P K, Rakshi J S, Bailey D L, Sawle G V, Brooks D J. Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with[18F]dopa PET[J]. J. Neurol. Neurosurg. Psy-chiatry, 1998,64(3):314-319. doi: 10.1136/jnnp.64.3.314

    14. [14]

      Gallagher C L, Holden J, Christian B, Harding S, Nickles R J, Johnson S. A within-subject comparison of 6-[18F]fluoro-m-tyrosine (FMT) and 6-[18F]fluoro-l-DOPA (FDOPA) in Parkinson disease (PD)[J]. Neuroimage, 2010,52:S75-S75. doi: 10.1016/j.neuroimage.2010.04.059

    15. [15]

      Brooks D J. Molecular imaging of dopamine transporters[J]. Ageing Res. Rev., 2016,30:114-121. doi: 10.1016/j.arr.2015.12.009

    16. [16]

      Lee C S, Samii A, Sossi V, Ruth T J, Schulzer M, Holden J E, Wudel J, Pal P K, De La Fuente-Fernandez R, Calne D B, Stoessl A J. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease[J]. Ann. Neurol., 2000,47(4):493-503. doi: 10.1002/1531-8249(200004)47:4<493::AID-ANA13>3.0.CO;2-4

    17. [17]

      Stehouwer J S, Goodman M M. Fluorine-18 radiolabeled PET tracers for imaging monoamine transporters: Dopamine, serotonin, and nor-epinephrine[J]. PET Clinics, 2009,4(1):101-128. doi: 10.1016/j.cpet.2009.05.006

    18. [18]

      Clarke R L, Daum S J, Gambino A J, Aceto M D, Pearl J, Levitt M, Cumiskey W R, Bogado E F. Compounds affecting the central nervous system. 4. 3 beta-phenyltropane-2-carboxylic esters and analogs[J]. J. Med. Chem., 1973,16(11):1260-1267. doi: 10.1021/jm00269a600

    19. [19]

      Jin C, Navarro H A, Carroll F I. Synthesis and structure-activity relationship of 3 beta-(4-alkylthio, -methylsulfinyl, and-methylsulfonyl-phenyl) tropane and 3 beta-(4-alkylthiophenyl) nortropane derivatives for monoamine transporters[J]. Biorg. Med. Chem., 2009,17(14):5126-5132. doi: 10.1016/j.bmc.2009.05.052

    20. [20]

      Carroll F I, Gao Y G, Rahman M A, Abraham P, Parham K, Lewin A H, Boja J W, Kuhar M J. Synthesis, ligand binding, QSAR, and CoMFA study of 3 beta-(p-substituted phenyl) tropane-2 beta-carboxylic acid methyl esters[J]. J. Med. Chem., 1991,34(9):2719-2725. doi: 10.1021/jm00113a008

    21. [21]

      Carroll F I. 2002 Medicinal chemistry division award address: Mono-amine transporters and opioid receptors. Targets for addiction therapy[J]. J. Med. Chem., 2003,46(10):1775-1794.

    22. [22]

      Meltzer P C, Liang A Y, Brownell A L, Elmaleh D R, Madras B K. Substituted 3-phenyltropane analogs of cocaine: Synthesis, inhibition of binding at cocaine recognition sites, and positron emission tomography imaging[J]. J. Med. Chem., 1993,36(7):855-862. doi: 10.1021/jm00059a010

    23. [23]

      Riss P J, Stockhofe K, Roesch F. Tropane-derived 11C-labelled and 18F-labelled DAT ligands[J]. J. Labelled Compd. Radiopharm., 2013,56(3/4):149-158.

    24. [24]

      Kerstens V S, Fazio P, Sundgren M, Matheson G J, Franzen E, Halldin C, Cervenka S, Svenningsson P, Varrone A. Reliability of dopamine transporter PET measurements with[18F]FE-PE2I in patients with Parkinson's disease[J]. EJNMMI Res., 2020,10(1)95. doi: 10.1186/s13550-020-00676-4

    25. [25]

      Cao S S, Tang J, Liu C Y, Fang Y, Ji L Y, Xu Y J, Chen Z P. Synthesis and biological evaluation of[18F]FECNT-d4 as a novel PET agent for dopamine transporter imaging[J]. Mol. Imaging Biol., 2021,23(5):733-744. doi: 10.1007/s11307-021-01603-2

    26. [26]

      Fan K L, Zhao H G, Li Y H, Du X X, Dai Y Y, Gao L L, Li Y, Sun Z H, Zhang Y. Characteristics and influencing factors of 11C-CFT PET imaging in patients with early and late onset Parkinson's disease[J]. Front. Neurol., 2023,141195577. doi: 10.3389/fneur.2023.1195577

    27. [27]

      Ouchi Y, Kanno T, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S, Torizuka T, Tanaka K. Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson's disease[J]. Brain, 2001,124(4):784-792. doi: 10.1093/brain/124.4.784

    28. [28]

      Sun X, Liu F, Li Q Y, Gai Y K, Ruan W W, Wimalarathne D N, Hu F, Tan X B, Lan X L. Quantitative research of 11C-CFT and 18F-FDG PET in Parkinson's disease: A pilot study with NeuroQ software[J]. Front. Neurosci., 2019,13299. doi: 10.3389/fnins.2019.00299

    29. [29]

      Nurmi E, Ruottinen H M, Kaasinen V, Bergman J, Haaparanta M, Solin O, Rinne J O. Progression in Parkinson's disease: A positron emission tomography study with a dopamine transporter ligand[18F] CF[J]. Ann. Neurol., 2000,47(6):804-808. doi: 10.1002/1531-8249(200006)47:6<804::AID-ANA14>3.0.CO;2-F

    30. [30]

      Park E, Hwang Y M, Lee C N, Kim S, Oh S Y, Kim Y C, Choe J G, Park K W. Differential diagnosis of patients with inconclusive Parkinsonian features using[18F]FP-CIT PET/CT[J]. Nucl. Med. Molec. Imag., 2014,48(2):106-113. doi: 10.1007/s13139-013-0253-1

    31. [31]

      Kerstens V S, Fazio P, Sundgren M, Halldin C, Svenningsson P, Varrone A. [18F]FE-PE2I DAT correlates with Parkinson's disease duration, stage, and rigidity/bradykinesia scores: A PET radioligand validation study[J]. EJNMMI Res., 2023,13(1)29. doi: 10.1186/s13550-023-00974-7

    32. [32]

      Fazio P, Svenningsson P, Cselenyi Z, Halldin C, Farde L, Varrone A. Nigrostriatal dopamine transporter availability in early Parkinson's disease[J]. Mov. Disord., 2018,33(4):592-599. doi: 10.1002/mds.27316

    33. [33]

      Mo S J, Axelsson J, Jonasson L, Larsson A, Ogren M J, Ogren M, Varrone A, Eriksson L, Backstrom D, af Bjerken S, Linder J, Riklund K. Dopamine transporter imaging with[18F]FE-PE2I PET and[123I]FP-CIT SPECTa clinical comparison[J]. EJNMMI Res., 2018,8100. doi: 10.1186/s13550-018-0450-0

    34. [34]

      Marner L, Korsholm K, Anderberg L, Lonsdale M N, Jensen M R, Brodsgaard E, Denholt C L, Gillings N, Law I, Friberg L. [18F]FE-PE2I PET is a feasible alternative to[123I]FP-CIT SPECT for dopamine transporter imaging in clinically uncertain parkinsonism[J]. EJNMMI Res., 2022,12(1)56. doi: 10.1186/s13550-022-00930-x

    35. [35]

      Kerstens V S, Varrone A. Dopamine transporter imaging in neurode-generative movement disorders: PET vs. SPECT[J]. Clin. Transl. Imaging, 2020,8(5):349-356. doi: 10.1007/s40336-020-00386-w

    36. [36]

      Chalon S, Vercouillie J, Payoux P, Deloye J B, Malherbe C, Le Jeune F, Arlicot N, Salabert A S, Guilloteau D, Emond P, Ribeiro M J. The story of the dopamine transporter PET tracer LBT-999:From conception to clinical use[J]. Front. Med., 2019,690. doi: 10.3389/fmed.2019.00090

    37. [37]

      Niznik H B, Van Tol H H M. Dopamine receptor genes: New tools for molecular psychiatry[J]. J. Psychiatry Neurosci., 1992,17(4):158-180.

    38. [38]

      Banerjee A, Prante O. Subtype-selective dopamine receptor radioligands for PET imaging: Current status and recent developments[J]. Curr. Med. Chem., 2012,19(23):3957-3966. doi: 10.2174/092986712802002518

    39. [39]

      Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth K J, Långström B, Sedvall G. Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D1 receptors using positron emission tomography[J]. Int. J. Rad. Appl. Instrum. A, 1986,37(10):1039-1043. doi: 10.1016/0883-2889(86)90044-4

    40. [40]

      Halldin C, Foged C, Farde L, Karlsson P, Hansen K, Grønvald F, Swahn C G, Hall H, Sedvall G. [11C]NNC 687 and[11C]NNC 756, dopamine D1 receptor ligands. Preparation, autoradiography and PET investigation in monkey[J]. Nucl. Med. Biol., 1993,20(8):945-953. doi: 10.1016/0969-8051(93)90095-C

    41. [41]

      Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y Y, Hwang D R, Keilp J, Kochan L, Van Heertum R, Gorman J M, Laruelle M. Prefrontal dopamine D1 receptors and working memory in schizophrenia[J]. J. Neurosci., 2002,22(9):3708-3719. doi: 10.1523/JNEUROSCI.22-09-03708.2002

    42. [42]

      Kosaka J, Takahashi H, Ito H, Takano A, Fujimura Y, Matsumoto R, Nozaki S, Yasuno F, Okubo Y, Kishimoto T, Suhara T. Decreased binding of[11C]NNC112 and[11C]SCH23390 in patients with chronic schizophrenia[J]. Life Sci., 2010,86(21/22):814-818.

    43. [43]

      Abi-Dargham A, Xu X, Thompson J L, Gil R, Kegeles L S, Urban N, Narendran R, Hwang D R, Laruelle M, Slifstein M. Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: A PET study with[11C]NNC112[J]. J. Psychopharm., 2012,26(6):794-805. doi: 10.1177/0269881111409265

    44. [44]

      Besret L, Dollé F, Hérard A S, Guillermier M, Demphel S, Hinnen F, Coulon C, Ottaviani M, Bottlaender M, Hantraye P, Kassiou M. Dopamine D1 receptor imaging in the rodent and primate brain using the isoquinoline (+)-[11C]A-69024 and positron emission tomography[J]. J. Pharm. Sci., 2008,97(7):2811-2819. doi: 10.1002/jps.21168

    45. [45]

      Kassiou M, Scheffel U, Ravert H T, Mathews W B, Musachio J L, Lambrecht R M, Dannals R F. [11C]A-69024-A potent and selective non-benzazepine radiotracer for in-vivo studies of dopamine D1 receptors[J]. Nucl. Med. Biol., 1995,22(2):221-226. doi: 10.1016/0969-8051(94)00086-Y

    46. [46]

      Tang C, Tomkins D M, Sanci V, Houle S, Dasilva J N. Chronic ethanol increases binding of dopamine D1 agonist R-[11C]SKF 82957 in vivo in rat brain[J]. Society for Neuroscience Abstracts, 2000,26(1/2)Abstract No.-290.295.

    47. [47]

      Dasilva J N, Schwartz R A, Greenwald E R, Lourenco C M, Wilson A A, Houle S. Dopamine D1 agonist R-[11C]SKF 82957: Synthesis and in vivo characterization in rats[J]. Nucl. Med. Biol., 1999,26(5):537-542. doi: 10.1016/S0969-8051(99)00015-3

    48. [48]

      Palner M, Mccormick P, Parkes J, Knudsen G M, Wilson A A. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957[J]. Nucl. Med. Biol., 2010,37(7):837-843. doi: 10.1016/j.nucmedbio.2010.04.193

    49. [49]

      Barret O, Zhang L, Alagille D, Constantinescu C C, Sandiego C, Papin C, Sullivan J M, Morley T, Carroll V M, Seibyl J, Chen J, Lee C, Villalobos A, Gray D, Mccarthy T J, Tamagnan G. Dopamine D1 receptor agonist PET tracer development: Assessment in nonhuman primates[J]. J. Nucl. Med., 2021,62(9):1307-1313. doi: 10.2967/jnumed.120.256008

    50. [50]

      Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders[J]. Expert Opin. Ther. Targets., 2017,21(3):259-272. doi: 10.1080/14728222.2017.1279149

    51. [51]

      DENG Y J, ZHU H, YANG Z, PENG Z P, JIA J H. Recent progress of PET radio-tracer for clinical use in central nervous system[J]. Isotope, 2020,33(4):250-262.

    52. [52]

      Sikazwe D M N, Li S M, Mardenborough L, Cody V, Roth B L, Ablordeppey S Y. Haloperidol: Towards further understanding of the structural contributions of its pharmacophric elements at D2-like receptors[J]. Bioorg. Med. Chem. Lett., 2004,14(23):5739-5742. doi: 10.1016/j.bmcl.2004.09.046

    53. [53]

      Im D, Inoue A, Fujiwara T, Nakane T, Yamanaka Y, Uemura T, Mori C, Shiimura Y, Kimura K T, Asada H, Nomura N, Tanaka T, Yamashita A, Nango E, Tono K, Kadji F M N, Aoki J, Iwata S, Shimamura T. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone[J]. Nat. Commun., 2020,11(1)6442. doi: 10.1038/s41467-020-20221-0

    54. [54]

      Wagner H N, Burns H D, Dannals R F, Wong D F, Langstrom B, Duelfer T, Frost J J, Ravert H T, Links J M, Rosenbloom S B, Lukas S E, Kramer A V, Kuhar M J. Imaging dopamine-receptors in the human-brain by positron tomography[J]. Science, 1983,221(4617):1264-1266. doi: 10.1126/science.6604315

    55. [55]

      Welch M J, Katzenellenbogen J A, Mathias C J, Brodack J W, Carlson K E, Chi D Y, Dence C S, Kilbourn M R, Perlmutter J S, Raichle M E, Terpogossian M M. N-(3-[18Ffluoropropyl)-spiperone: The preferred 18F labeled spiperone analog for positron emission tomographic studies of the dopamine receptor[J]. Nucl. Med. Biol., 1988,15(1):83-97.

    56. [56]

      De Paulis T. The discovery of epidepride and its analogs as high-affinity radioligands for imaging extrastriatal dopamine D2 receptors in human brain[J]. Curr. Pharm. Des., 2003,9(8):673-696. doi: 10.2174/1381612033391135

    57. [57]

      Sawle G V, Playford E D, Brooks D J, Quinn N, Frackowiak R S J. Asymmetrical presynaptic and postsynaptic changes in the striatal dopamine projection in dopa naive parkinsonism-diagnostic implications of the D2 receptor status[J]. Brain, 1993,116:853-867. doi: 10.1093/brain/116.4.853

    58. [58]

      Murakami S, Marubayashi N, Fukuda T, Takehara S, Tahara T. Anti-dopaminergic effects of the stereoisomers of N-(1-alkyl-2-pyrrolidinyl) methyl-5-sulfamoylbenzamides and 2, 3-dihydrobenzofuran-7-carboxamides[J]. J. Med. Chem., 1991,34(1):261-267. doi: 10.1021/jm00105a041

    59. [59]

      Mukherjee J, Yang Z Y, Das M K, Brown T. Fluorinated benzamide neuroleptics .3. development of (S)-N-(1-allyl-2-pyrrolidinyl) methyl-5-(3-[18Ffluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D2 receptor tracer[J]. Nucl. Med. Biol., 1995,22(3):283-296. doi: 10.1016/0969-8051(94)00117-3

    60. [60]

      Buchsbaum M S, Christian B T, Lehrer D S, Narayanan T K, Shi B, Mantil J, Kemether E, Oakes T R, Mukherjee J. D2/D3 dopamine receptor binding with[F-18] fallypride in thalamus and cortex of patients with schizophrenia[J]. Schizophr. Res., 2006,85(1):232-244.

    61. [61]

      Grunder G, Landvogt C, Vernaleken I, Buchholz H G, Ondracek J, Siessmeier T, Hartter S, Schreckenberger M, Stoeter P, Hiemke C, Rosch F, Wong D F, Bartenstein P. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia[J]. Neuropsychopharmacology, 2006,31(5):1027-1035. doi: 10.1038/sj.npp.1300931

    62. [62]

      Fisher B E, Li Q, Nacca A, Salema G J, Song J, Yip J, Hui J S, Jakowec M W, Petzinger G M. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease[J]. Neuroreport, 2013,24(10):509-514. doi: 10.1097/WNR.0b013e328361dc13

    63. [63]

      Mukherjee J, Shi B, Christian B T, Chattopadhyay S, Narayanan T K. 11C-fallypride: Radiosynthesis and preliminary evaluation of a novel dopamine D2/D3 receptor PET radiotracer in non-human primate brain[J]. Biorg. Med. Chem., 2004,12(1):95-102. doi: 10.1016/j.bmc.2003.10.020

    64. [64]

      Mukherjee J, Narayanan T K, Christian B T, Shi B Z, Dunigan K A, Mantil J. In vitro and in vivo evaluation of the binding of the dopamine D2 receptor agonist C-11-(R,S)-5-hydroxy-2-(di-n-propylamino) tetralin in rodents and nonhuman primate[J]. Synapse, 2000,37(1):64-70. doi: 10.1002/(SICI)1098-2396(200007)37:1<64::AID-SYN7>3.0.CO;2-F

    65. [65]

      Narendran R, Slifstein M, Guillin O, Hwang Y Y, Hwang D R, Scher E, Reeder S, Rabiner E, Laruelle M. Dopamine D2/3 receptor agonist positron emission tomography radiotracer[11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo[J]. Synapse, 2006,60(7):485-495. doi: 10.1002/syn.20325

    66. [66]

      Tziortzi A C, Searle G E, Tzimopoulou S, Salinas C, Beaver J D, Jenkinson M, Laruelle M, Rabiner E A, Gunn R N. Imaging dopamine receptors in humans with[11C]-(+)-PHNO: Dissection of D3 signal and anatomy[J]. Neuroimage, 2011,54(1):264-277. doi: 10.1016/j.neuroimage.2010.06.044

    67. [67]

      Zhang A, Zhang Y, Branfman A R, Baldessarini R J, Neumeyer J L. Advances in development of dopaminergic aporphinoids[J]. J. Med. Chem., 2007,50(2):171-181. doi: 10.1021/jm060959i

    68. [68]

      Narendran R, Hwang D R, Slifstein M, Talbot P S, Erritzoe D, Huang Y Y, Cooper T B, Martinez D, Kegeles L S, Abi-Dargham A, Laruelle M. In vivo vulnerability to competition by endogenous dopamine: Comparison of the D2 receptor agonist radiotracer (-)-N-[11C] propyl-norapomorphine ([11] NPA) with the D2 receptor antagonist radiotracer[11C]raclopride[J]. Synapse, 2004,52(3):188-208. doi: 10.1002/syn.20013

    69. [69]

      Joyce J N, Milian M J. Dopamine D3 receptor antagonists as therapeutic agents[J]. Drug Discovery Today, 2005,10(13):917-925. doi: 10.1016/S1359-6446(05)03491-4

    70. [70]

      Rubi B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion[J]. J. Biol. Chem., 2005,280(44):36824-36832. doi: 10.1074/jbc.M505560200

    71. [71]

      Sokoloff P, Giros B, Martres M P, Bouthenet M L, Schwartz J C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics[J]. Nature, 1990,347(6289):146-151. doi: 10.1038/347146a0

    72. [72]

      Chien E Y T, Liu W, Zhao Q, Katritch V, Han G W, Hanson M A, Shi L, Newman A H, Javitch J A, Cherezov V, Stevens R C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist[J]. Science, 2010,330(6007):1091-1095. doi: 10.1126/science.1197410

    73. [73]

      Xu J B, Hassanzadeh B, Chu W H, Tu Z D, Jones L A, Luedtke R R, Perlmutter J S, Mintun M A, Mach R H. [3H]4-(dimethylamino)-N-(4-(4-(2-methoxyphenyl) piperazin-1-yl) butyl) benzamide: A selective radioligand for dopamine D3 receptors. Ⅱ. Quantitative analysis of dopamine D3 and D2 receptor density ratio in the caudate-putamen[J]. Synapse, 2010,64(6):449-459. doi: 10.1002/syn.20748

    74. [74]

      Wang Q, Mach R H, Luedtke R R, Reichert D E. Subtype selectivity of dopamine receptor ligands: Insights from structure and ligand-based methods[J]. J. Chem. Inf. Model., 2010,50(11):1970-1985. doi: 10.1021/ci1002747

    75. [75]

      Newman A H, Beuming T, Banala A K, Donthamsett P, Pongetti K, Labounty A, Levy B, Cao J J, Michino M, Luedtke R R, Javitch J A, Shi L. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor[J]. J. Med. Chem., 2012,55(15):6689-6699. doi: 10.1021/jm300482h

    76. [76]

      Tu Z, Li S, Cui J, Xu J, Taylor M, Ho D, Luedtke R R, Mach R H. Synthesis and pharmacological evaluation of fluorine-containing D3 dopamine receptor ligands[J]. J. Med. Chem., 2011,54(6):1555-1564. doi: 10.1021/jm101323b

    77. [77]

      Mach R H, Tu Z D, Xu J B, Li S H, Jones L A, Taylor M, Luedtke R R, Derdeyn C P, Perlmutter J S, Mintun M A. Endogenous dopamine (DA) competes with the binding of a radiolabeled D3 receptor partial agonist in vivo: A positron emission tomography study[J]. Synapse, 2011,65(8):724-732. doi: 10.1002/syn.20891

    78. [78]

      Doot R K, Young A J, Dominguez T L, Ward C G, Li S, Helili Z, Sheffer R, Lee H, Schubert E K, Mach R H, Dubroff J G. Human blocking study to assess selectivity of [18FFTP PET for dopamine D3 receptors[J]. J. Cereb. Blood Flow Metab., 2021,41(Suppl1):244-245.

    79. [79]

      Prante O, Tietze R, Hocke C, Loeber S, Huebner H, Kuwert T, Gmeiner P. Synthesis, radiofluorination, and in vitro evaluation of pyrazolo[1, 5-a] pyridine-based dopamine D4 receptor ligands: Discovery of an inverse agonist radioligand for PET[J]. J. Med. Chem., 2008,51(6):1800-1810. doi: 10.1021/jm701375u

    80. [80]

      Tietze R, Loeber S, Huebner H, Gmeiner P, Kuwert T, Prante O. Discovery of a dopamine D4 selective PET ligand candidate taking advantage of a click chemistry based REM linker[J]. Bioorg. Med. Chem. Lett., 2008,18(3):983-988. doi: 10.1016/j.bmcl.2007.12.026

    81. [81]

      Willmann M, Ermert J, Prante O, Huebner H, Gmeiner P, Neumaier B. Radiosynthesis and evaluation of 18F-labeled dopamine D4-receptor ligands[J]. Nucl. Med. Biol., 2021,92:43-52. doi: 10.1016/j.nucmedbio.2020.07.004

    82. [82]

      YU C C, ZENG C Y, YANG Z W. The role of dopamine D5 receptor in blood pressure regulation[J]. Chinese Journal of Hypertension, 2007,14(2):98-100.

    83. [83]

      Giorgioni G, Piergentili A, Ruggieri S, Quaglia W. Dopamine D5 receptors: A challenge to medicinal chemists[J]. Mini-Rev. Med. Chem., 2008,8(10):976-995. doi: 10.2174/138955708785740661

    84. [84]

      QIAO J P, QIAO H W, WU X Y, DENG A F, ZHU L. Recent advances in PET tracers for imaging of the dopaminergic system[J]. Chemistry of Life, 2014,34(2):154-165.

    85. [85]

      Kish S J, Robitaille Y, Elawar M, Clark B, Schut L, Ball M J, Young L T, Currier R, Shannak K. Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy[J]. Neurology, 1992,42(8):1573-1577. doi: 10.1212/WNL.42.8.1573

    86. [86]

      Dasilva J N, Kilbourn M R, Mangner T J. Synthesis of[11C] tetrabenazine, a vesicular monoamine uptake inhibitor, for PET imaging studies[J]. Appl. Radiat. Isot., 1993,44(4):673-676. doi: 10.1016/0969-8043(93)90130-3

    87. [87]

      Kilbourn M R, Dasilva J N, Frey K A, Koeppe R A, Kuhl D E. In vivo imaging of vesicular monoamine transporters in human brain using[11C] tetrabenazine and positron emission tomography[J]. J. Neurochem., 1993,60(6):2315-2318. doi: 10.1111/j.1471-4159.1993.tb03521.x

    88. [88]

      Dasilva J N, Carey J E, Sherman P S, Pisani T J, Kilbourn M R. Characterization of 11C tetrabenazine as an in-vivo radioligand for the vesicular monoamine transporter[J]. Nucl. Med. Biol., 1994,21(2):151-156. doi: 10.1016/0969-8051(94)90003-5

    89. [89]

      Schwartz D E, Bruderer H, Rieder J, Brossi A. Metabolic studies of tetrabenazine, a psychotropic drug in animals and man[J]. Biochem. Pharmacol., 1966,15(5):645-655. doi: 10.1016/0006-2952(66)90031-1

    90. [90]

      Frey K A, Koeppe R A, Kilbourn M R, Vanderborght T M, Albin R L, Gilman S, Kuhl D E. Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging[J]. Ann. Neurol., 1996,40(6):873-884. doi: 10.1002/ana.410400609

    91. [91]

      Bohnen N I, Albin R L, Koeppe R A, Wernette K A, Kilbourn M R, Minoshima S, Frey K A. Positron emission tomography of monoami-nergic vesicular binding in aging and Parkinson disease[J]. J. Cereb. Blood Flow Metab., 2006,26(9):1198-1212. doi: 10.1038/sj.jcbfm.9600276

    92. [92]

      Johanson C E, Frey K A, Lundahl L H, Keenan P, Lockhart N, Roll J, Galloway G P, Koeppe R A, Kilbourn M R, Robbins T, Schuster C R. Cognitive function and nigrostriatal markers in abstinent metham-phetamine abusers[J]. Psychopharmacology, 2006,185(3):327-338. doi: 10.1007/s00213-006-0330-6

    93. [93]

      Boileau I, Mccluskey T, Tong J, Furukawa Y, Houle S, Kish S J. Rapid recovery of vesicular dopamine levels in methamphetamine users in early abstinence[J]. Neuropsychopharmacology, 2016,41(4):1179-1187. doi: 10.1038/npp.2015.267

    94. [94]

      Kilbourn M R, Koeppe R A. Classics in neuroimaging: Radioligands for the vesicular monoamine transporter 2[J]. ACS Chem. Neurosci., 2019,10(1):25-29. doi: 10.1021/acschemneuro.8b00429

    95. [95]

      Kilbourn M R, Frey K A, Borght T V, Sherman P S. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters[J]. Nucl. Med. Biol., 1996,23(4):467-471. doi: 10.1016/0969-8051(96)00023-6

    96. [96]

      Lee C S, Schulzer M, De La Fuente-Fernández R, Mak E, Kuramoto L, Sossi V, Ruth T J, Calne D B, Stoessl A J. Lack of regional selectivity during the progression of parkinson disease: Implications for pathogenesis[J]. Arch. Neurol., 2004,61(12):1920-1925.

    97. [97]

      Alexander P K, Lie Y, Jones G, Sivaratnam C, Bozinvski S, Mulligan R S, Young K, Villemagne V L, Rowe C C. Management impact of imaging brain vesicular monoamine transporter type 2 in clinically uncertain parkinsonian syndrome with 18F-AV133 and PET[J]. J. Nucl. Med., 2017,58(11):1815-1820. doi: 10.2967/jnumed.116.189019

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(5)
  • Abstract views(810)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return