Citation: Lu QI, Congjiao RAN, Chao WU, Zhipeng HUANG, Chi ZHANG. Linear and nonlinear optical responses in perovskite-like formate salts[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 247-255. doi: 10.11862/CJIC.20230386 shu

Linear and nonlinear optical responses in perovskite-like formate salts

Figures(5)

  • Two mixed organic cationic hybrid formate salts, (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er), have been obtained by in situ solvothermal synthesis. The two materials are isostructural (chiral space group C2221) and feature interesting perovskite-like structures. Photophysical studies including linear and nonlinear optical characteristics were performed. (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] exhibited wide optical bandgaps of 5.59 and 5.61 eV, corresponding to the UV absorption edges of 222 and 221 nm, respectively. Powder second harmonic generation (SHG) measurements demonstrate that the SHG effects of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] were 0.32 and 0.37 times that of benchmark KH2PO4 (KDP), respectively. The birefringences were measured to be 0.013 and 0.015 for (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4], respectively. First-principles studies show that two π -conjugated (CH(NH2)2)+ and HCOO- groups are the main contributors to the optical properties.
  • 加载中
    1. [1]

      Parola S, Julián-López B, Carlos L D, Sanchez C. Optical properties of hybrid organic-inorganic materials and their applications[J]. Adv. Funct. Mater., 2016,26(36):6506-6544. doi: 10.1002/adfm.201602730

    2. [2]

      Chen X, Wang Y R, Chai R, Xu Y, Li H R, Liu B Y. Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels[J]. ACS Appl. Mater. Interfaces, 2017,9(15):13554-13563. doi: 10.1021/acsami.7b02679

    3. [3]

      Wang H L, Dong Z J, Liu H C, Li W P, Zhu L Q, Chen H N. Roles of organic molecules in inorganic CsPbX3 perovskite solar cells[J]. Adv. Energy Mater., 2020,11(1)2002940.

    4. [4]

      Jin H L, Li J, Iocozzia J, Zeng X, Wei P C, Yang C, Li N, Liu Z P, He J H, Zhu T J, Wang J C, Lin Z Q, Wang S. Hybrid organic-inorganic thermoelectric materials and devices[J]. Angew. Chem. Int. Ed., 2019,58(43):15206-15226. doi: 10.1002/anie.201901106

    5. [5]

      Zhang Z P, Liu X, Liu X M, Lu Z W, Sui X, Zhen B Y, Lin Z S, Chen L, Wu L M. Driving nonlinear optical activity with dipolar 2-aminopyrimidinium cations in (C4H6N3)+(H2PO3)-[J]. Chem. Mater., 2022,34(4):1976-1984. doi: 10.1021/acs.chemmater.2c00002

    6. [6]

      Wu C, Jiang C B, Wei G F, Jiang X X, Wang Z J, Lin Z S, Huang Z P, Humphrey M G, Zhang C. Toward large second-harmonic generation and deep-UV transparency in strongly electropositive transition metal sulfates[J]. J. Am. Chem. Soc., 2023,145(5):3040-3046. doi: 10.1021/jacs.2c11645

    7. [7]

      Jiang C B, Jiang X X, Wu C, Huang Z P, Lin Z S, Humphrey M G, Zhang C. Isoreticular design of KTiOPO4-like deep-ultraviolet transparent materials exhibiting strong second-harmonic generation[J]. J. Am. Chem. Soc., 2022,144(44):20394-20399. doi: 10.1021/jacs.2c08403

    8. [8]

      Wu C, Lin L, Jiang X X, Lin Z S, Huang Z P, Humphrey M G, Halasyamani P S, Zhang C. K5(W3O9F4)(IO3): An efficient mid-infrared nonlinear optical compound with high Laser damage threshold[J]. Chem. Mater., 2019,31(24):10100-10108. doi: 10.1021/acs.chemmater.9b03214

    9. [9]

      Mutailipu M, Poeppelmeier K R, Pan S L. Borates: A rich source for optical materials[J]. Chem. Rev., 2021,121(3):1130-1202. doi: 10.1021/acs.chemrev.0c00796

    10. [10]

      Becker P. Borate materials in nonlinear optics[J]. Adv. Mater., 1998,10(13):979-992. doi: 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N

    11. [11]

      Chen Q Q, Hu C L, Chen J, Li Y L, Li B X, Mao J G. [o-C5H4NHOH]2[I7O18(OH)]⋅3H2O: An organic-inorganic hybrid SHG material featuring an [I7O18(OH)]2- branched polyiodate chain[J]. Angew. Chem. Int. Ed., 2021,60(32):17426-17429. doi: 10.1002/anie.202106335

    12. [12]

      Wu C, Jiang X X, Wang Z J, Sha H Y, Lin Z S, Huang Z P, Long X F, Humphrey M G, Zhang C. UV solar-blind-region phase-matchable optical nonlinearity and anisotropy in a π-conjugated cation-containing phosphate[J]. Angew. Chem. Int. Ed., 2021,60(27):14806-14810. doi: 10.1002/anie.202102992

    13. [13]

      Li M J, Zhang X, Xiong Z Y, Li Y Q, Zhou Y, Chen X, Song Y P, Hong M C, Luo J H, Zhao S G. A hybrid antiperovskite with strong linear and second-order nonlinear optical responses[J]. Angew. Chem. Int. Ed., 2022,61(42)e202211151. doi: 10.1002/anie.202211151

    14. [14]

      Qi Z K, Chen Y L, Gao H Z, Zhang F Q, Li S L, Zhang X M. Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties[J]. Sci. China Chem., 2021,64:2111-2117. doi: 10.1007/s11426-021-1076-9

    15. [15]

      Luo M, Lin C S, Lin D H, Ye N. Rational design of the metal-free KBe2BO3F2 (KBBF) family member C(NH2)3SO3F with ultraviolet optical nonlinearity[J]. Angew. Chem. Int. Ed., 2020,59(37):15978-15981. doi: 10.1002/anie.202006671

    16. [16]

      Jin C C, Zeng H, Zhang F, Qiu H T, Yang Z H, Mutailipu M, Pan S L. Guanidinium fluorooxoborates as efficient metal-free short-wavelength nonlinear optical crystals[J]. Chem. Mater., 2021,34(1):440-450.

    17. [17]

      Liu L H, Hu C L, Bai Z Y, Yuan F F, Huang Y S, Zhang L Z, Lin Z B. 2(C3H7N6)+·2Cl-·H2O: An ultraviolet nonlinear optical crystal with large birefrigence and strong second-harmonic generation[J]. Chem. Commun., 2020,56(93):14657-14660. doi: 10.1039/D0CC06558G

    18. [18]

      Lu J, Liu X, Zhao M, Deng X B, Shi K X, Wu Q R, Chen L, Wu L M. Discovery of NLO semiorganic (C5H6ON)+(H2PO4)-: Dipole moment modulation and superior synergy in solar-blind UV region[J]. J. Am. Chem. Soc., 2021,143(9):3647-3654. doi: 10.1021/jacs.1c00959

    19. [19]

      Yan D, Ren M M, Liu Q, Mao F F, Ma Y, Tang R L, Huang H B, Zhang B B, Zhang X D, Li S F. [C(NH2)2NHNO2][C(NH2)3](NO3)2: A mixed organic cationic hybrid nitrate with an unprecedented nonlinear-optical-active unit[J]. Inorg. Chem., 2023,62(12):4757-4761. doi: 10.1021/acs.inorgchem.3c00556

    20. [20]

      Chen C T, Wang G L, Wang X Y, Xu Z Y. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications[J]. Appl. Phys. B, 2009,97:9-25. doi: 10.1007/s00340-009-3554-4

    21. [21]

      Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J. New nonlinear-optical crystal: LiB3O5[J]. J. Opt. Soc. Am. B, 1989,6(4):616-621. doi: 10.1364/JOSAB.6.000616

    22. [22]

      Knyrim J S, Römer S R, Schnick W, Huppertz H. High-pressure synthesis and characterization of the alkaline earth borate β-BaB4O7[J]. Solid State Sci., 2009,11(2):336-342. doi: 10.1016/j.solidstatesciences.2008.07.015

    23. [23]

      Zou G H, Ye N, Huang L, Lin X S. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A=K, Rb, Cs; B=Ca, Sr, Ba) as nonlinear optical materials[J]. J. Am. Chem. Soc., 2011,133(49):20001-20007. doi: 10.1021/ja209276a

    24. [24]

      Liu X M, Kang L, Gong P F, Lin Z S. LiZn(OH)CO3: A deep-ultraviolet nonlinear optical hydroxycarbonate designed from a diamond-like structure[J]. Angew. Chem. Int. Ed., 2021,60(24):13574-13578. doi: 10.1002/anie.202101308

    25. [25]

      Zhao S G, Yang Y, Shen Y G, Zhao B Q, Li L N, Ji C M, Wu Z Y, Yuan D Q, Lin Z S, Hong M C, Luo J H. Cooperation of three chromophores generates the water-resistant nitrate nonlinear optical material Bi3TeO6OH(NO3)2[J]. Angew. Chem. Int. Ed., 2017,56(2):540-544. doi: 10.1002/anie.201609876

    26. [26]

      Song Y X, Luo M, Lin C S, Ye N. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE=La, Y, and Gd): New polar materials with large NLO effect after adjusting pH values of reaction systems[J]. Chem. Mater., 2017,29(2):896-903. doi: 10.1021/acs.chemmater.6b05119

    27. [27]

      Li M J, Wang Z Y, Ahmed B, Li Y Q, Wang H, Song Y P, Song X Y, Kuang X J, Luo J H, Zhao S G. A second-order nonlinear optical material consisting of two π-conjugated groups[J]. ChemPlusChem, 2023,88(3)e202300094. doi: 10.1002/cplu.202300094

    28. [28]

      Shaw B K, Hughes A R, Ducamp M, Moss S, Debnath A, Sapnik A F, Thorne M F, McHugh L N, Pugliese A, Keeble D S, Chater P, Bermudez-Garcia J M, Moya X, Saha S K, Keen D A, Coudert F X, Blanc F, Bennett T D. Melting of hybrid organic‑inorganic perovskites[J]. Nat. Chem., 2021,13(8):778-785. doi: 10.1038/s41557-021-00681-7

    29. [29]

      Gomez-Aguirre L C, Pato-Doldan B, Mira J, Castro-Garcia S, Senaris-Rodriguez M A, Sanchez-Andujar M, Singleton J, Zapf V S. Magnetic ordering-induced multiferroic behavior in [CH3NH3][Co(HCOO)3] metal-organic framework[J]. J. Am. Chem. Soc., 2016,138(4):1122-1125. doi: 10.1021/jacs.5b11688

    30. [30]

      Scatena R, Johnson R D, Manuel P, Macchi P. Formate-mediated magnetic superexchange in the model hybrid perovskite [(CH3)2NH2]Cu(HCOO)3[J]. J. Mater. Chem. C, 2020,8(37):12840-12847. doi: 10.1039/D0TC03913F

    31. [31]

      Kim S Y, Yun Y, Shin S, Lee J H, Heo Y W, Lee S. Wide range tuning of band gap energy of A3B2X9 perovskite-like halides[J]. Scr. Mater., 2019,166:107-111. doi: 10.1016/j.scriptamat.2019.03.009

    32. [32]

      Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected[J]. Acta Crystallogr. Sect. A, 2015,A71(1):59-75.

    33. [33]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    34. [34]

      Johnson T J, Bernacki B E, Redding R L, Su Y F, Brauer C S, Myers T L, Stephan E G. Intensity-value corrections for integrating sphere measurements of solid samples measured behind glass[J]. Appl. Spectrosc., 2014,68(11):1224-1234. doi: 10.1366/13-07322

    35. [35]

      Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials[J]. J. Appl. Phys., 1968,39(8):3798-3813. doi: 10.1063/1.1656857

    36. [36]

      Clark S J, Segall M, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C. First principles methods using CASTEP[J]. Z. Kristallogr., 2005,220(5/6):567-570.

    37. [37]

      Payne M C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992,64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045

    38. [38]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1998,77(18):3865-3868.

    39. [39]

      Perdew J P, Yue W. Pair-distribution function and its coupling- constant average for the spin-polarized electron gas[J]. Phys. Rev. B, 1992,46(20):12947-12954. doi: 10.1103/PhysRevB.46.12947

    40. [40]

      Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials[J]. Phys. Rev. Lett., 1979,43(20):1494-1497. doi: 10.1103/PhysRevLett.43.1494

    41. [41]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    42. [42]

      Samarasekere P, Wang X Q, Kaveevivitchai W, Jacobson A J. Reactions of rare earth hydrated nitrates and oxides with formamide: Relevant to recycling rare earth metals[J]. Cryst. Growth Des., 2015,15(3):1119-1128. doi: 10.1021/cg501421u

    43. [43]

      Feng J H, Hu C L, Xu X, Kong F, Mao J G. Na2RE2TeO4(BO3)2 (RE=Y, Dy-Lu): Luminescent and structural studies on a series of mixed metal borotellurates[J]. Inorg. Chem., 2015,54(5):2447-2454. doi: 10.1021/ic503068s

  • 加载中
    1. [1]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    2. [2]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    3. [3]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    6. [6]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    9. [9]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    10. [10]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    11. [11]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    14. [14]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    15. [15]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    16. [16]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    17. [17]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    18. [18]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    19. [19]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    20. [20]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

Metrics
  • PDF Downloads(1)
  • Abstract views(359)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return