Citation: Yang LIU, Xinde DUAN, Shuangshuang REN, Fayuan GE, Hegen ZHENG. Application of metal-organic frameworks and their derivatives for water splitting and zinc-air batteries[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 15-32. doi: 10.11862/CJIC.20230383 shu

Application of metal-organic frameworks and their derivatives for water splitting and zinc-air batteries

  • Corresponding author: Hegen ZHENG, zhenghg@nju.edu.com
  • Received Date: 13 October 2023
    Revised Date: 21 November 2023

Figures(15)

  • The green energy conversion and storage technologies such as water splitting and zinc -air batteries (ZABs) open a new path to solve the energy crisis and achieve carbon neutrality goals. However, the practical applications of these technologies are largely limited by the sluggish kinetics of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Therefore, it is urgent to develop efficient and stable electrocatalysts to effectively reduce reaction overpotential and accelerate the processes of electrocatalytic reactions. Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their flexible and tunable compositions and precise and controllable structures. This article mainly introduces the recent research progress of MOFs-based electrocatalysts in water splitting and ZABs with emphasis on their preparation strategies and architecture characteristics. Finally, some summaries and outlooks of the existing problems and development trends in this field are put forward.
  • 加载中
    1. [1]

      Zhang W, Lai W Z, Cao R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017,117(4):3717-3797. doi: 10.1021/acs.chemrev.6b00299

    2. [2]

      Cao S, Li Y, Tang Y J, Sun Y Y, Li W T, Guo X T, Yang F Y, Zhang G X, Zhou H J, Liu Z, Li Q, Shakouri M, Pang H. Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater[J]. Adv. Mater., 2023,352301011. doi: 10.1002/adma.202301011

    3. [3]

      Zhao L, Liu Z, Chen D, Liu F, Yang Z Y, Li X, Yu H H, Liu H, Zhou W J. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage[J]. Nano-Micro Lett., 2021,1349. doi: 10.1007/s40820-020-00577-0

    4. [4]

      Huang M, Wang X P, Liu X, Mai L Q. Fast ionic storage in aqueous rechargeable batteries: From fundamentals to applications[J]. Adv. Mater., 2022,342105611. doi: 10.1002/adma.202105611

    5. [5]

      Xie B X, Sun B Y, Gao T Y, Ma Y L, Yin G P, Zuo P J. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coord. Chem. Rev., 2022,460214478. doi: 10.1016/j.ccr.2022.214478

    6. [6]

      Liu F, Fan Z X. Defect engineering of two-dimensional materials for advanced energy conversion and storage[J]. Chem. Soc. Rev., 2023,52:1723-1772. doi: 10.1039/D2CS00931E

    7. [7]

      Pan J Q, Sun Y Z, Li W, Knight J, Manthiram A. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell[J]. Nat. Commun., 2013,42178. doi: 10.1038/ncomms3178

    8. [8]

      Guo X T, Xu H Y, Li W T, Liu Y Y, Shi Y X, Li Q, Pang H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage[J]. Adv. Sci., 2023,102206084. doi: 10.1002/advs.202206084

    9. [9]

      Lv T T, Zhu G Y, Dong S Y, Kong Q Q, Peng Y, Jiang S, Zhang G X, Yang Z L, Yang S Y, Dong X C, Pang H, Zhang Y Z. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023,62e202216089. doi: 10.1002/anie.202216089

    10. [10]

      Kim J Y, Lee J W, Jung H S, Shin H, Park N G. High-efficiency perovskite solar cells[J]. Chem. Rev., 2020,120(15):7867-7918. doi: 10.1021/acs.chemrev.0c00107

    11. [11]

      Liu C L, Bai Y, Li W T, Yang F Y, Zhang G X, Pang H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors[J]. Angew. Chem. Int. Ed., 2022,61e202116282. doi: 10.1002/anie.202116282

    12. [12]

      Zhong H X, Zhang Q, Wang J, Zhang X B, Wei X L, Wu Z J, Li K, Meng F L, Bao D, Yan J M. Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst[J]. ACS Catal., 2018,8:3965-3970. doi: 10.1021/acscatal.8b00467

    13. [13]

      Liao P S, Kang J W, Zhong Y C, Xiang R N, Wang S H, Li S S, Liu X L, Li G Q. Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production[J]. Sci. China Chem., 2023,66:1924-1939. doi: 10.1007/s11426-022-1545-0

    14. [14]

      Cai X, Lai L, Lin J, Shen Z. Recent advances in air electrodes for Zn-air batteries: Electrocatalysis and structural design[J]. Mater. Horizons, 2017,4:945-976. doi: 10.1039/C7MH00358G

    15. [15]

      Ren S S, Duan X D, Liang S, Zhang M D, Zheng H G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives[J]. J. Mater. Chem. A, 2020,8:6144-6182. doi: 10.1039/C9TA14231B

    16. [16]

      Yang H, Han X T, Douka A I, Huang L, Gong L Q, Xia C F, Park H S, Xia B Y. Advanced oxygen electrocatalysis in energy conversion and storage[J]. Adv. Funct. Mater., 2021,312007602. doi: 10.1002/adfm.202007602

    17. [17]

      Chen Z J, Duan X G, Wei W, Wang S B, Ni B J. Iridium-based nanomaterials for electrochemical water splitting[J]. Nano Energy, 2020,78105270. doi: 10.1016/j.nanoen.2020.105270

    18. [18]

      Li X R, Yang X C, Xue H G, Pang H, Xu Q. Metal-organic frameworks as a platform for clean energy applications[J]. EnergyChem, 2020,2100027. doi: 10.1016/j.enchem.2020.100027

    19. [19]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application[J]. Coord. Chem. Rev., 2019,378:262-280. doi: 10.1016/j.ccr.2018.02.009

    20. [20]

      Zhang X F, Yang C Y, An P F, Cui C Q, Ma Y M, Liu H T, Wang H, Yan X Y, Li G D, Tang Z Y. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis[J]. Sci. Adv., 2022,8eadd5678. doi: 10.1126/sciadv.add5678

    21. [21]

      Zhao Y F, Zeng H, Zhu X W, Lu W G, Li D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021,50:4484-4513. doi: 10.1039/D0CS00955E

    22. [22]

      Pei J Y, Shao K, Wang J X, Wen H M, Yang Y, Cui Y J, Krishna R, Li B, Qian G D. A chemically stable Hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture[J]. Adv. Mater., 2020,321908275. doi: 10.1002/adma.201908275

    23. [23]

      Mallakpour S, Nikkhoo E, Hussain C M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment[J]. Coord. Chem. Rev., 2022,451214262. doi: 10.1016/j.ccr.2021.214262

    24. [24]

      Peng Y, Sanati S, Morsali A, Garcia H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem. Int. Ed., 2023,62e202214707. doi: 10.1002/anie.202214707

    25. [25]

      Jiao L, Jiang H L. Metal-organic frameworks for catalysis: Fundamentals and future prospects[J]. Chin. J. Catal., 2023,45:1-5. doi: 10.1016/S1872-2067(22)64193-7

    26. [26]

      Shen Y, Pan T, Wang L, Ren Z, Zhang W N, Huo F W. Programmable logic in metal-organic frameworks for catalysis[J]. Adv. Mater., 2021,332007442. doi: 10.1002/adma.202007442

    27. [27]

      Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem. Soc. Rev., 2020,49:1414-1448. doi: 10.1039/C9CS00906J

    28. [28]

      Zhang J, Zhang Q Y, Feng X L. Support and interface effects in water-splitting electrocatalysts[J]. Adv. Mater., 2019,311808167. doi: 10.1002/adma.201808167

    29. [29]

      Das S, Kundu A, Kuila T, Murmu N C. Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries[J]. Energy Storage Mater., 2023,61102890. doi: 10.1016/j.ensm.2023.102890

    30. [30]

      Li Z S, Li B L, Yu M, Yu C L, Shen P K. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion[J]. Int. J. Hydrogen Energy, 2022,47:26956-26977. doi: 10.1016/j.ijhydene.2022.06.049

    31. [31]

      Li S S, Gao Y Q, Li N, Ge L, Bu X H, Feng P Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction[J]. Energy Environ. Sci., 2021,14:1897-1927. doi: 10.1039/D0EE03697H

    32. [32]

      Zhu Y T, Yue K H, Xia C F, Zaman S, Yang H, Wang X Y, Yan Y, Xia B Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries[J]. Nano-Micro Lett., 2021,13137. doi: 10.1007/s40820-021-00669-5

    33. [33]

      Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355146.

    34. [34]

      Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Adv. Mater., 2015,27:6834-6840. doi: 10.1002/adma.201503211

    35. [35]

      Busch M, Halck N B, Kramm U I, Siahrostami S, Krtil P, Rossmeisl J. Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution[J]. Nano Energy, 2016,29126. doi: 10.1016/j.nanoen.2016.04.011

    36. [36]

      Lyu F C, Zeng S S, Jia Z, Ma F X, Sun L G, Cheng L Z, Pan J, Bao Y, Mao Z Y, Bu Y, Li Y Y, Lu J. Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution[J]. Nat. Commun., 2022,136249. doi: 10.1038/s41467-022-33725-8

    37. [37]

      Yang Y, Lun Z Y, Xia G L, Zheng F C, He M N, Chen Q W. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J]. Energy Environ. Sci., 2015,83563. doi: 10.1039/C5EE02460A

    38. [38]

      Lu X F, Yu L, Lou X W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts[J]. Sci. Adv., 2019,5eaav6009. doi: 10.1126/sciadv.aav6009

    39. [39]

      Zhang X L, Yu P C, Su X Z, Hu S J, Shi L, Wang Y H, Yang P P, Gao F Y, Wu Z Z, Chi L P, Zheng Y R, Gao M R. Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst[J]. Sci. Adv., 2023,9eadh2885. doi: 10.1126/sciadv.adh2885

    40. [40]

      Chen C, Tuo Y X, Lu Q, Lu H, Zhang S Y, Zhou Y, Zhang J, Liu Z N, Kang Z X, Feng X, Chen D. Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction[J]. Appl. Catal. B-Environ., 2021,287119953. doi: 10.1016/j.apcatb.2021.119953

    41. [41]

      Wu B, Gong S, Lin Y C, Li T, Chen A Y, Zhao M Y, Zhang Q J, Chen L. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water[J]. Adv. Mater., 2022,342108619. doi: 10.1002/adma.202108619

    42. [42]

      Liu K, Fu J W, Lin Y Y, Luo T, Ni G H, Li H M, Lin Z, Liu M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction[J]. Nat. Commun., 2022,132075. doi: 10.1038/s41467-022-29797-1

    43. [43]

      Jiao L, Seow J Y R, Skinner W S, Wang Z Y, Jiang H L. Metal-organic frameworks: structures and functional applications[J]. Mater. Today, 2019,27:43-68. doi: 10.1016/j.mattod.2018.10.038

    44. [44]

      Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,10310186. doi: 10.1073/pnas.0602439103

    45. [45]

      Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,3092040. doi: 10.1126/science.1116275

    46. [46]

      Li F Y, Du M, Xiao X, Xu Q. Self-supporting metal-organic framework-based nanoarrays for electrocatalysis[J]. ACS Nano, 2022,16(12):19913-19939. doi: 10.1021/acsnano.2c09396

    47. [47]

      Hu Y, Liu J W, Lee C, Li M, Han B, Wu T C, Pan H G, Geng D S, Yan Q Y. Integration of metal-organic frameworks and metals: Synergy for electrocatalysis[J]. Small, 2023,192300916. doi: 10.1002/smll.202300916

    48. [48]

      Zhu B J, Wen D S, Liang Z B, Zou R Q. Conductive metal-organic frameworks for electrochemical energy conversion and storage[J]. Coord. Chem. Rev., 2021,446214119. doi: 10.1016/j.ccr.2021.214119

    49. [49]

      Li C, Zhang L L, Chen J Q, Li X L, Sun J W, Zhu J W, Wang X, Fu Y S. Recent development and applications of electrical conductive MOFs[J]. Nanoscale, 2021,13:485-509. doi: 10.1039/D0NR06396G

    50. [50]

      Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications[J]. Chem. Soc. Rev., 2018,47:6267-6295. doi: 10.1039/C8CS00268A

    51. [51]

      Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020,120(2):1438-1511. doi: 10.1021/acs.chemrev.9b00223

    52. [52]

      Takaishi S, Hosoda M, Kajiwara T, Miyasaka H, Yamashita M, Nakanishi Y, Kitagawa Y, Yamaguchi K, Kobayashi A, Kitagawa H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J]. Inorg. Chem., 2009,48(19):9048-9050. doi: 10.1021/ic802117q

    53. [53]

      Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water[J]. J. Am. Chem. Soc., 2015,137(1):118-121. doi: 10.1021/ja5116937

    54. [54]

      Huang X, Yao H Y, Cui Y T, Hao W, Zhu J, Xu W, Zhu D B. Conductive copper benzenehexathiol coordination polymer as a hydrogen evolution catalyst[J]. ACS Appl. Mater. Interfaces, 2017,9(46):40752-40759. doi: 10.1021/acsami.7b14523

    55. [55]

      Xing D N, Wang Y Y, Zhou P, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Dai Y, Huang B B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π-d conjugated metal-organic framework for highly efficient oxygen evolution reaction[J]. Appl. Catal. B-Environ., 2020,278119295. doi: 10.1016/j.apcatb.2020.119295

    56. [56]

      Huang H, Zhao Y, Bai Y M, Li F M, Zhang Y, Chen Y. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Adv. Sci., 2020,72000012. doi: 10.1002/advs.202000012

    57. [57]

      Li J W, Liu P, Mao J X, Yan J Y, Song W B. Structural and electronic modulation of conductive MOFs for efficient oxygen evolution reaction electrocatalysis[J]. J. Mater. Chem. A, 2021,911248. doi: 10.1039/D1TA01970H

    58. [58]

      Pan N, Zhang H W, Yang B, Qiu H, Li L Y, Song L, Zhang M D. Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn-air batteries[J]. Chem. Commun., 2020,56:13615-13618. doi: 10.1039/D0CC05569G

    59. [59]

      Zhong M, Kong L J, Zhao K, Zhang Y H, Li N, Bu X H. Recent progress of nanoscale metal-organic frameworks in synthesis and battery applications[J]. Adv. Sci., 2021,82001980. doi: 10.1002/advs.202001980

    60. [60]

      Xiao L Y, Wang Z L, Guan J Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges[J]. Coord. Chem. Rev., 2022,472214777. doi: 10.1016/j.ccr.2022.214777

    61. [61]

      Ge F Y, Yan Q, Liang S, Duan X D, Zheng H G. From hydrogen bond to van der Waals force: Molecular scalpel strategy to exfoliate a two-dimensional metal-organic nanosheet[J]. Inorg. Chem., 2022,61(14):5465-5468. doi: 10.1021/acs.inorgchem.1c03755

    62. [62]

      Cheng J, Shen X P, Chen H Y, Zhou H, Chen P, Ji Z Y, Xue Y T, Zhou H B, Zhu G X. Morphology-dependent electrocatalytic performance of a two-dimensional nickel-iron MOF for oxygen evolution reaction[J]. Inorg. Chem., 2022,61(18):7095-7102. doi: 10.1021/acs.inorgchem.2c00546

    63. [63]

      Sk S, Madhu R, Gavali D S, Bhasin V, Thapa R, Jha S N, Bhattacharyya D, Kundu S, Pal U. An ultrathin 2D NiCo-LDH nanosheet decorated NH2-UiO-66 MOF-nanocomposite with exceptional chemical stability for electrocatalytic water splitting[J]. J. Mater. Chem. A, 2023,11:10309-10318. doi: 10.1039/D3TA00836C

    64. [64]

      Peng Y, Xu J, Xu J M, Ma J, Bai Yang, Cao S, Zhang S T, Pang H. Metal-organic framework (MOF) composites as promising materials for energy storage applications[J]. Adv. Colloid Interface Sci., 2022,307102732. doi: 10.1016/j.cis.2022.102732

    65. [65]

      Li F J, Jiang M H, Lai C G, Xu H F, Zhang K Y, Jin Z. Yttrium- and cerium-codoped ultrathin metal-organic framework nanosheet arrays for high-efficiency electrocatalytic overall water splitting[J]. Nano Lett., 2022,22:7238-7245. doi: 10.1021/acs.nanolett.2c02755

    66. [66]

      Jin S. How to effectively utilize MOFs for electrocatalysis[J]. ACS Energy Lett., 2019,4:1443-1445. doi: 10.1021/acsenergylett.9b01134

    67. [67]

      Chu X Y, Meng F L, Deng T, Zhang W. Metal organic framework derived porous carbon materials excel as an excellent platform for high-performance packaged supercapacitors[J]. Nanoscale, 2021,13:5570-5593. doi: 10.1039/D1NR00160D

    68. [68]

      Yan L T, Xu Y L, Chen P, Zhang S, Jiang H M, Yang L Z, Wang Y, Zhang L, Shen J X, Zhao X B, Wang L Z. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air Batteries[J]. Adv. Mater., 2020,322003313. doi: 10.1002/adma.202003313

    69. [69]

      Shi X, Wu A P, Yan H J, Zhang L, Tian C G, Wang L, Fu H G. A "MOFs plus MOFs" strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting[J]. J. Mater. Chem. A, 2018,6:20100-20109. doi: 10.1039/C8TA07906D

    70. [70]

      Guan C, Sumboja A, Wu H J, Ren W N, Liu X M, Zhang H, Liu Z L, Cheng C W, Pennycook S J, Wang J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries[J]. Adv. Mater., 2017,291704117. doi: 10.1002/adma.201704117

    71. [71]

      Niu Y, Xiao M L, Zhu J B, Zeng T T, Li J D, Zhang W Y, Su D, Yu A P, Chen Z W. A "trimurti" heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries[J]. J. Mater. Chem. A, 2020,8:9177-9184. doi: 10.1039/D0TA01145B

    72. [72]

      Zhao J Y, Wang R, Wang S, Lv Y R, Xua H, Zang S Q. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst[J]. J. Mater. Chem. A, 2019,7:7389-7395. doi: 10.1039/C8TA12116H

    73. [73]

      Zhang M D, Dai Q B, Zheng H G, Chen M D, Dai L M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Adv. Mater., 2018,301705431. doi: 10.1002/adma.201705431

    74. [74]

      Han X P, Ling X F, Wang Y, Ma T Y, Zhong C, Hu W B, Deng Y D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2019,58:5359-5364. doi: 10.1002/anie.201901109

    75. [75]

      Chen X, Ma D D, Chen B, Zhang K X, Zou R Q, Wu X T, Zhu Q L. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction[J]. Appl. Catal. B-Environ., 2020,267118720. doi: 10.1016/j.apcatb.2020.118720

    76. [76]

      Li D D, Xu H Q, Jiao L, Jiang H L. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities[J]. EnergyChem, 2019,1100005. doi: 10.1016/j.enchem.2019.100005

    77. [77]

      Zhu Q L, Xia W, Akita T, Zou R Q, Xu Q. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction[J]. Adv. Mater., 2016,28:6391-6398. doi: 10.1002/adma.201600979

    78. [78]

      Yan Q, Duan X D, Liu Y, Ge F Y, Zheng H G. A hybridization cage-confinement pyrolysis strategy for ultrasmall Ni3Fe alloy coated with N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for Zn-air batteries[J]. J. Mater. Chem. A, 2023,11:1430-1438. doi: 10.1039/D2TA08319A

    79. [79]

      Nami-Ana S F, Zeinali S. Synthesis of a novel one-dimensional ternary MOF-on-MOF in form of direct and carbonization derived structure towards promising catalytic efficiency of HER[J]. Appl. Energy, 2023,350121755. doi: 10.1016/j.apenergy.2023.121755

    80. [80]

      Ren S S, Duan X D, Ge F Y, Zhang M D, Zheng H G. Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting[J]. J. Power Sources, 2020,480228866. doi: 10.1016/j.jpowsour.2020.228866

    81. [81]

      Zhang F P, Chen L, Zhang Y L, Peng Y Y, Luo X, Xu Y S, Shi Y L. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in-situ sacrificial strategy for performance-enhanced zinc-air batteries[J]. Chem. Eng. J., 2022,447137490. doi: 10.1016/j.cej.2022.137490

    82. [82]

      Liu X P, Liu Y P, Zhang C C, Chen Y, Luo G Y, Wang Z T, Wang D L, Gao S Y. N, S co-doped hollow carbon nanocages confined Fe, Co bimetallic sites for bifunctional oxygen electrocatalysis[J]. Chem. Eng. J., 2023,473145135. doi: 10.1016/j.cej.2023.145135

    83. [83]

      Duan X D, Ren S S, Pan N, Zhang M D, Zheng H G. MOF-derived Fe, Co@N-C bifunctional oxygen electrocatalysts for Zn-air batteries[J]. J. Mater. Chem. A, 2020,89355. doi: 10.1039/D0TA02825H

    84. [84]

      Duan X D, Pan N, Sun C, Zhang K X, Zhu X K, Zhang M D, Song L, Zheng H G. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting[J]. J. Energy Chem., 2021,56:290-298. doi: 10.1016/j.jechem.2020.08.007

    85. [85]

      Ren S S, Duan X D, Lei M Y, Liang S, Zhang M D, Zheng H G. Energetic MOF-derived cobalt/iron nitrides embedded into N, S-codoped carbon nanotubes as superior bifunctional oxygen catalysts for Zn-air batteries[J]. Appl. Surf. Sci., 2021,569151030. doi: 10.1016/j.apsusc.2021.151030

    86. [86]

      Ren S S, Duan X D, Ge F Y, Chen Z J, Yang Q X, Zhang M D, Zheng H G. Novel MOF-derived hollow CoFe alloy coupled with N-doped Ketjen black as boosted bifunctional oxygen catalysts for Zn-air batteries[J]. Chem. Eng. J., 2022,427131614. doi: 10.1016/j.cej.2021.131614

    87. [87]

      Hou C C, Zou L L, Wang Y, Xu Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries[J]. Angew. Chem. Int. Ed., 2020,59:21360-21366. doi: 10.1002/anie.202011347

    88. [88]

      Hu J P, Qin Y Z, Sun H, Ma Y, Lin L, Peng Y, Zhong J, Chen M Z, Zhao X H, Deng Z. Combining multivariate electrospinning with surface MOF functionalization to construct tunable active sites toward trifunctional electrocatalysis[J]. Small, 2022,182106260. doi: 10.1002/smll.202106260

    89. [89]

      Duan X D, Ren S S, Ge F Y, Zhu X K, Zhang M D, Zheng H G. MOF-derived CoNi, CoO, NiO@N-C bifunctional oxygen electrocatalysts for liquid and all-solid state Zn-air batteries[J]. Nanoscale, 2021,1317655. doi: 10.1039/D1NR04537G

    90. [90]

      Duan X D, Zhu J W, Zheng H G. Energetic MOF-derived hollow carbon tubes with interconnected channels and encapsulated nickel-cobalt alloy sites as bifunctional catalysts for Zn-air batteries with stable cycling over 600 cycles[J]. Appl. Surf. Sci., 2022,591153070. doi: 10.1016/j.apsusc.2022.153070

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(6)
  • Abstract views(827)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return