Citation: Wanting SHEN, Shaoxuan SUN, Yuting FENG, Fengqi ZHANG, Tingting LU, Yongsheng YANG. Research progress of coordination-driven assembly of single-component white light emission metal-organic complex materials[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 33-53. doi: 10.11862/CJIC.20230380 shu

Research progress of coordination-driven assembly of single-component white light emission metal-organic complex materials

Figures(16)

  • Metal-organic complex materials are widely used in security and anti-counterfeiting, information storage, intelligent sensing, display devices, white light lighting, and other fields based on their structural diversity and controllable luminescence properties. In this review, the research progress of single-component metal-organic complexes in white light luminescence is introduced in detail. According to the five categories of Au (Ⅰ)/Ag(Ⅰ)/Cu(Ⅰ) complexes, Zn(Ⅱ)/Cd(Ⅱ) complexes, Eu(Ⅲ)&Tb(Ⅲ) co-doped Ln(Ⅲ) complexes, dye-doped complexes, other main group elements/ transition elements/lanthanide elements doped/multi-element doped complexes, the structural characteristics, luminescence mechanism, white light luminescence composition and white light performance index of complexes are analyzed. The construction strategies of white light emission materials of different types of complexes are generalized. The advantages of metal-organic complex materials as white light candidate materials are summarized, and the problems to be further solved are put forward from two aspects of theoretical research and practical application, to realize the industrial production and application of metal-organic complex luminescent materials as soon as possible.
  • 加载中
    1. [1]

      Wang M S, Guo G C. Inorganic-organic hybrid white light phosphors[J]. Chem. Commun., 2016,52(90):13194-13204. doi: 10.1039/C6CC03184F

    2. [2]

      Bergh A, Craford G, Duggal A, Haitz R. The promise and challenge of solid-state lighting[J]. Phys. Today, 2001,54(12):42-47. doi: 10.1063/1.1445547

    3. [3]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent functional metal-organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    4. [4]

      Cui Y J, Chen B L, Qian G D. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications[J]. Coord. Chem. Rev., 2014,273:76-86.

    5. [5]

      Xu L J, Xu G T, Chen Z N. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers[J]. Coord. Chem. Rev., 2014,273:47-62.

    6. [6]

      Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38(5):1330-1352. doi: 10.1039/b802352m

    7. [7]

      Hu Z C, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    8. [8]

      Meyer L V, Schönfeld F, Müller-Buschbaum K. Lanthanide based tuning of luminescence in MOFs and dense frameworks—From mono- and multimetal systems to sensors and films[J]. Chem. Commun., 2014,50(60):8093-8108. doi: 10.1039/c4cc00848k

    9. [9]

      Roy S, Chakraborty A, Maji T K. Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials[J]. Coord. Chem. Rev., 2014,273:139-164.

    10. [10]

      Müller-Buschbaum K, Beuerle F, Feldmann C. MOF based luminescence tuning and chemical/physical sensing[J]. Microporous Mesoporous Mat., 2015,216:171-199. doi: 10.1016/j.micromeso.2015.03.036

    11. [11]

      Gather M C, Köhnen A, Meerholz K. White organic light-emitting diodes[J]. Adv. Mater., 2011,23(2):233-248. doi: 10.1002/adma.201002636

    12. [12]

      Mukherjee S, Thilagar P. Organic white-light emitting materials[J]. Dyes Pigment., 2014,110:2-27. doi: 10.1016/j.dyepig.2014.05.031

    13. [13]

      Shang M M, Li C X, Lin J. How to produce white light in a single-phase host?[J]. Chem. Soc. Rev., 2014,43(5):1372-1386. doi: 10.1039/C3CS60314H

    14. [14]

      Kamtekar K T, Monkman A P, Bryce M R. Recent advances in white organic light-emitting materials and devices (WOLEDs)[J]. Adv. Mater., 2010,22(5):572-582. doi: 10.1002/adma.200902148

    15. [15]

      Wang Q, Ma D G. Management of charges and excitons for high- performance white organic light-emitting diodes[J]. Chem. Soc. Rev., 2010,39(7):2387-2398. doi: 10.1039/b909057f

    16. [16]

      Wu H B, Ying L, Yang W, Cao Y. Progress and perspective of polymer white light-emitting devices and materials[J]. Chem. Soc. Rev., 2009,38(12):3391-3400. doi: 10.1039/b816352a

    17. [17]

      Abbel R, Grenier C, Pouderoijen M J, Stouwdam J W, Leclère P E L G, Sijbesma R P, Meijer E W, Schenning A P H J. White-light emitting hydrogen-bonded supramolecular copolymers based on π-conjugated oligomers[J]. J. Am. Chem. Soc., 2009,131(2):833-843. doi: 10.1021/ja807996y

    18. [18]

      Almeida D A, Santos B, Paolo B, Quicheron M. Solid state lighting review—Potential and challenges in europe[J]. Renew. Sust. Energ. Rev., 2014,34:30-48. doi: 10.1016/j.rser.2014.02.029

    19. [19]

      Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T. White light emitting diodes with super-high luminous efficacy[J]. J. Phys. D: Appl. Phys., 2010,43(35)354002. doi: 10.1088/0022-3727/43/35/354002

    20. [20]

      Pan M, Liao W M, Yin S Y, Sun S S, Su C Y. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies[J]. Chem. Rev., 2018,118(18):8889-8935. doi: 10.1021/acs.chemrev.8b00222

    21. [21]

      Schubert E F, Kim J K. Solid-state light sources getting smart[J]. Science, 2005,308(5726):1274-1278. doi: 10.1126/science.1108712

    22. [22]

      He G J, Guo D, He C, Zhang X L, Zhao X W, Duan C Y. A color- tunable europium complex emitting three primary colors and white light[J]. Angew. Chem. Int. Ed., 2009,121(33):6248-6251. doi: 10.1002/ange.200901266

    23. [23]

      Xue P C, Wang P P, Chen P, Yao B Q, Gong P, Sun J B, Zhang Z Q, Lu R. Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect[J]. Chem. Sci., 2017,8(9):6060-6065. doi: 10.1039/C5SC03739E

    24. [24]

      Osawa M, Soma S, Kobayashi H, Tanaka Y, Hoshino M. Near-white light emission from single crystals of cationic dinuclear gold(Ⅰ) complexes with bridged diphosphine ligands[J]. Dalton Trans., 2023,52(10):2956-2965. doi: 10.1039/D2DT03785H

    25. [25]

      Mihaly J J, Wolf S M, Phillips A T, Mam S, Yung Z, Haley J E, Zeller M, de La Harpe K, Holt E, Grusenmeyer T A, Collins S, Gray T G. Synthetically tunable white-, green-, and yellow-green-light emission in dual-luminescent gold(Ⅰ) complexes bearing a diphenylamino-2, 7-fluorenyl moiety[J]. Inorg. Chem., 2022,61(3):1228-1235. doi: 10.1021/acs.inorgchem.1c02405

    26. [26]

      Xue Z Z, Meng X D, Li X Y, Han S D, Pan J, Wang G M. Luminescent thermochromism and white-light emission of a 3D[Ag4Br6] cluster-based coordination framework with both adamantane-like node and linker[J]. Inorg. Chem., 2021,60(7):4375-4379. doi: 10.1021/acs.inorgchem.1c00280

    27. [27]

      Lin F, Liu W, Wang H, Li J. Strongly emissive white-light-emitting silver iodide based inorganic-organic hybrid structures with comparable quantum efficiency to commercial phosphors[J]. Chem. Commun., 2020,56(10):1481-1484. doi: 10.1039/C9CC09260A

    28. [28]

      Shao J J, Chen W M, Mensah A, Liu P L, Ni J L, Chen L Z, Wang F M. Realizing near white and warm light emission of cuprous iodide complexes by alkyl-isomerization of ligands[J]. Dalton Trans., 2023,52(11):3254-3259. doi: 10.1039/D2DT02526D

    29. [29]

      Yu M X, Liu C P, Zhao Y F, Li S C, Yu Y L, Lv J Q, Chen L, Jiang F L, Hong M C. White-light emission and circularly polarized luminescence from a chiral copper(Ⅰ) coordination polymer through symmetry-breaking crystallization[J]. Angew. Chem. Int. Ed., 2022,134(22)e202201590. doi: 10.1002/ange.202201590

    30. [30]

      Yu C F, Wang X L, Wu T, Gu X W, Huang W, Kirillov A M, Wu D Y. Color tuning of intrinsic white-light emission in anthracene-linker coordination networks[J]. Dalton Trans., 2020,49(34):12082-12087. doi: 10.1039/D0DT02033H

    31. [31]

      Li J B, Zheng H W, Wu M, Liang Q F, Yang D D, Zheng X J, Tan H W. Multistimulus response of two tautomeric Zn(Ⅱ) complexes and their white-light emission based on different mechanisms[J]. Inorg. Chem., 2021,60(23):17677-17686. doi: 10.1021/acs.inorgchem.1c02286

    32. [32]

      Zavaleta A, Lykhin A O, Monteiro J H S K, Uchida S, Bell T W, de Bettencourt-Dias A, Varganov S A, Gallucci J. Full visible spectrum and white light emission with a single, input-tunable organic fluorophore[J]. J. Am. Chem. Soc., 2020,142(48):20306-20312. doi: 10.1021/jacs.0c08182

    33. [33]

      Li Q, Wei W J, Xue Z Z, Mu Y, Pan J, Hu J X, Wang G M. Achieving an electron transfer photochromic complex for switchable white-light emission[J]. Chin. Chem. Lett., 2022,33(6):3203-3206. doi: 10.1016/j.cclet.2021.10.015

    34. [34]

      Wang X D, Song Y T, Pei W Y, Ma J F. Single-component white light emission from a metal-coordinated cyclotriveratrylene-based coordination polymer[J]. Inorg. Chem., 2022,61(28):10768-10773. doi: 10.1021/acs.inorgchem.2c00974

    35. [35]

      Wang C, Yin Z, Cheng Z, Ma W M, Li X Y, Hu X T, Shi R, Chen A W, Ma Y M. A series of anionic MOFs with cluster-based, pillared-layer and rod-spacer motifs: Near-sunlight white-light emission and selective dye capture[J]. CrystEngComm, 2020,22(5):878-887. doi: 10.1039/C9CE01691K

    36. [36]

      Liu H, Zhang K, Gao P F, Luo J H, Jiang Y Y, Zhou M S, Li T, Zhu X L, Fu H R. Realization of single-phase white-light-emitting materials with time-evolution ultralong room-temperature phosphorescence by coordination assemblies[J]. Inorg. Chem., 2022,61(3):1636-1643. doi: 10.1021/acs.inorgchem.1c03461

    37. [37]

      Wang Z, Mo J T, Pan J J, Pan M. White light and color-tuning long persistent luminescence from metal halide based metal-organic frameworks[J]. Adv. Funct. Mater., 2023,33(21)2300021. doi: 10.1002/adfm.202300021

    38. [38]

      Wang Z, Liu J J, Li M Y, Chen G. White light and long persistent luminescence from metal cluster-based metal-organic frameworks[J]. Chem. Eng. J., 2023,462142154. doi: 10.1016/j.cej.2023.142154

    39. [39]

      Yu X L, Ryadun A A, Kovalenko K A, Guselnikova T Y, Ponomareva V G, Potapov A S, Fedin V P. 4 in 1: Multifunctional europium- organic frameworks with luminescence sensing properties, white light emission, proton conductivity and reverse acetylene-carbon dioxide adsorption selectivity[J]. Dalton Trans., 2023,52(25):8695-8703. doi: 10.1039/D3DT01323E

    40. [40]

      Manna K, Sutter J P, Natarajan S. Blue-emitting ligand-mediated assembly of rare-earth MOFs toward white-light emission, sensing, magnetic, and catalytic studies[J]. Inorg. Chem., 2022,61(42):16770-16785. doi: 10.1021/acs.inorgchem.2c02611

    41. [41]

      Wei M M, Luo L L, Cui R F, Wang X, Chen J Y, Gai Z L, Li X, Wei H B, Wei C, Bian Z Q. Highly luminescent and stable lanthanide coordination polymers based 2-(3', 4'-dicarboxyphenoxy)-benzoic acid: Crystal structure, photoluminescence, white light emission and fluorescence sensing[J]. Dyes Pigment., 2022,206110650. doi: 10.1016/j.dyepig.2022.110650

    42. [42]

      Gálico D A, Kitos A A, Ovens J S, Sigoli F A, Murugesu M. Lanthanide-based molecular cluster-aggregates: Optical barcoding and white-light emission with nanosized {Ln20} compounds[J]. Angew. Chem. Int. Ed., 2021,133(11):6195-6201. doi: 10.1002/ange.202013867

    43. [43]

      Wang M, Gao H W, Li J X, Bai F Y, Xing Y H, Shi Z. Multifunctional luminescence sensing and white light adjustment of lanthanide metal-organic frameworks constructed from the flexible cyclotriphosphazene-derived hexacarboxylic acid ligand[J]. Dalton Trans., 2021,50(41):14618-14628. doi: 10.1039/D1DT02560K

    44. [44]

      Chen H J, Chen L Q, Lin L R, Long L S, Zheng L S. Doped luminescent lanthanide coordination polymers exhibiting both white-light emission and thermal sensitivity[J]. Inorg. Chem., 2021,60(10):6986-6990. doi: 10.1021/acs.inorgchem.1c00740

    45. [45]

      Li Q P, Qian J J, Zhou J, Du L, Zhao Q H. Highly chemically and thermally stable lanthanide coordination polymers for luminescent probes and white light emitting diodes[J]. CrystEngComm, 2020,22(15):2667-2674. doi: 10.1039/D0CE00228C

    46. [46]

      Wang Y T, Zhang K, Wang X K, Xin X L, Zhang X R, Fan W D, Xu B, Dai F N, Sun D F. Accurate tuning of rare earth metal-organic frameworks with unprecedented topology for white-light emission[J]. J. Mater. Chem. C, 2020,8(4):1374-1379. doi: 10.1039/C9TC05471E

    47. [47]

      Zhang Z, Chen Y X, Chang H, Wang Y Y, Li X P, Zhu X J. Aggregation-induced white emission of lanthanide metallopolymer and its coating on cellulose nanopaper for white-light softening[J]. J. Mater. Chem. C, 2020,8(6):2205-2210. doi: 10.1039/C9TC05894J

    48. [48]

      Yang Y, Li W L, Sun C Y, Shan G G, Qin C, Shao K Z, Wang J G, Su Z M. Encapsulation of AIEgens within metal-organic framework toward high-performance white light-emitting diodes[J]. Adv. Opt. Mater., 2022,10(16)2200174. doi: 10.1002/adom.202200174

    49. [49]

      Liu H F, Guo C X, Zhang Z Y, Mu C Q, Feng Q, Zhang M M. Hexaphenyltriphenylene-based multicomponent metallacages: Host-guest complexation for white-light emission[J]. Chem.-Eur. J., 2023,29(21)e202203926. doi: 10.1002/chem.202203926

    50. [50]

      Gu S F, Xiong X H, Gong L L, Zhang H P, Xu Y, Feng X F, Luo F. Classified encapsulation of an organic dye and metal-organic complex in different molecular compartments for white-light emission and selective adsorption of C2H2 over CO2[J]. Inorg. Chem., 2021,60(11):8211-8217. doi: 10.1021/acs.inorgchem.1c00863

    51. [51]

      Wang X B, Li Z Y, Ying W, Chen D K, Li P P, Deng Z, Peng X S. Blue metal-organic framework encapsulated denatured R-phycoerythrin proteins for a white-light-emitting thin film[J]. J. Mater. Chem. C, 2020,8(1):240-246. doi: 10.1039/C9TC05342E

    52. [52]

      Fu H M, Jiang C L, Luo C H, Lin H C, Peng H. Manganese halide hybrids with a reversible luminous color and their application for a white light-emitting diode[J]. CrystEngComm, 2022,24(39):6910-6916. doi: 10.1039/D2CE00883A

    53. [53]

      Wang Q, Liu Q, Du X M, Zhao B, Li Y, Ruan W J. A white-light-emitting single MOF sensor-based array for berberine homologue discrimination[J]. J. Mater. Chem. C, 2020,8(4):1433-1439. doi: 10.1039/C9TC05180E

    54. [54]

      Peedikakkal A M P, Jalilov A S, Shaikh A R, Kalanthoden A N, Al-Saadi A A. Blue- and white-light-emitting 2D-coordination polymers and their solid-state photodimerization reaction[J]. CrystEngComm, 2021,23(43):7663-7670. doi: 10.1039/D1CE00991E

    55. [55]

      Song X L, Peng C D, Xu X X, Yin J L, Fei H H. Efficient, broadband self-trapped white-light emission from haloplumbate-based metal- organic frameworks[J]. Chem. Commun., 2020,56(69):10078-10081. doi: 10.1039/D0CC04473C

    56. [56]

      Song G M, Li Z Y, Gong P F, Xie R J, Lin Z S. Tunable white light emission in a zero-dimensional organic-inorganic metal halide hybrid with ultra-high color rendering index[J]. Adv. Opt. Mater., 2021,9(11)2002246. doi: 10.1002/adom.202002246

    57. [57]

      Feng X, Shang Y P, Zhang K, Hong M Z, Li J F, Xu H D, Wang L Y, Li Z J. In situ ligand-induced Ln-MOFs based on a chromophore moiety: White light emission and turn-on detection of trace antibiotics[J]. CrystEngComm, 2022,24(23):4187-4200. doi: 10.1039/D2CE00613H

    58. [58]

      Chen J, Xie Z Y, Meng L Y, Hu Z Y, Kuang X F, Xie Y M, Lu C Z. Luminescence tunable europium and samarium complexes: Reversible on/off switching and white-light emission[J]. Inorg. Chem., 2020,59(10):6963-6977. doi: 10.1021/acs.inorgchem.0c00392

    59. [59]

      Mund S, Vaidyanathan S. New isomeric ancillary ligands and their Eu complexes: A single component white light emissive phosphor and their applications in red/white smart LEDs, electronic noses, and temperature sensing[J]. J. Mater. Chem. C, 2022,10(18):7201-7215. doi: 10.1039/D2TC00664B

    60. [60]

      Devi R, Singh K, Vaidyanathan S. Synergy in the energy transfer between ligands and Eu ions in molecular europium complexes: Single-component white light-emitting luminogens[J]. J. Mater. Chem. C, 2020,8(25):8643-8653. doi: 10.1039/D0TC01360A

    61. [61]

      O'Neil A T, Chalard A, Malmström J, Kitchen J A. White light and colour-tunable emission from a single component europium-1, 8-naphthalimide thin film[J]. Dalton Trans., 2023,52(8):2255-2261. doi: 10.1039/D2DT03644D

    62. [62]

      Mara D, Pilia L, Van de Steen M, Miletto I, Zeng M, Hecke K V, Serpe A, Deplano P, Deun R V, Artizzu F. Single-component panchromatic white light generation, and tuneable excimer-like visible orange and NIR emission in a Dy quinolinolate complex[J]. J. Mater. Chem. C, 2021,9(43):15641-15648. doi: 10.1039/D1TC04191F

    63. [63]

      Zhong L, Chen W B, Ouyang Z J, Yang M, Zhang Y Q, Gao S, Schulze M, Wensdorfer W, Dong W. Unprecedented one-dimensional chain and two-dimensional network dysprosium(Ⅲ) single-molecule toroics with white-light emission[J]. Chem. Commun., 2020,56(17):2590-2593. doi: 10.1039/C9CC08852K

    64. [64]

      Cai Z L, Yan W C, Guo R Y, Liu H Y, Huo P H, Yu G, Bian Z Q, Liu Z W. Warm-white-light perdeuterated Dy(Ⅲ) complex with a photoluminescence quantum yield of up to 72% in deuterated chloroform[J]. Inorg. Chem., 2023,62(17):6560-6564. doi: 10.1021/acs.inorgchem.3c00721

    65. [65]

      Psalti A E, Andriotou D, Diamantis S A, Chatz-Giachia A, Pournara A, Manos M J, Hatzidimitriou A, Lazarides T. Mixed-metal and mixed-ligand lanthanide metal-organic frameworks based on 2, 6-naphthalenedicarboxylate: Thermally activated sensitization and white-light emission[J]. Inorg. Chem., 2022,61(30):11959-11972. doi: 10.1021/acs.inorgchem.2c01703

    66. [66]

      Eliseeva S V, Salerno E V, Lopez Bermudez B A, Petpud S, Pecoraro V L. Dy3+ white light emission can be finely controlled by tuning the first coordination sphere of Ga3+/Dy3+ metallacrown complexes[J]. J. Am. Chem. Soc., 2020,142(38):16173-16176. doi: 10.1021/jacs.0c07198

    67. [67]

      Qian J F, Lu H J, Zheng Z F, Xu M M, Qian Y, Zhang Z H, Wang J Q, He M Y, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers[J]. Dalton Trans., 2021,50(40):14325-14331. doi: 10.1039/D1DT01618K

    68. [68]

      Zhang G Y, Yin J L, Song X L, Fei H H. A moisture-stable organosulfonate-based metal-organic framework with intrinsic self-trapped white-light emission[J]. Chem. Commun., 2020,56(9):1325-1328. doi: 10.1039/C9CC09486E

    69. [69]

      Huang M Y, Liang Z X, Huang J L, Zhang S Y, Wen Y H, Wu X T. Dimensional expansion of 1D zigzag chains to a 2D two-fold interpenetrated metal-organic framework for adsorption of lanthanide cations and white light emission[J]. CrystEngComm, 2023,25(11):1637-1642. doi: 10.1039/D3CE00001J

    70. [70]

      Zhang Z, Li Y J, Geng L J, Feng G L, Ren J J, Yu X D. Healable, phase-selective, and white-light-emitting titania based hybrid lanthanide-doped metallogels[J]. Inorg. Chem., 2020,59(6):3974-3982. doi: 10.1021/acs.inorgchem.9b03662

    71. [71]

      Qiu Y Q, Feng Y Q, Zhao Q, Wang H W, Guo Y C, Qiu D F. White light emission from a green cyclometalated platinum(Ⅱ) terpyridylphenylacetylide upon titration with Zn(Ⅱ) and Eu(Ⅲ)[J]. Dalton Trans., 2020,49(32):11163-11169. doi: 10.1039/D0DT02336A

    72. [72]

      Charytanowicz T, Sieklucka B, Chorazy S. Lanthanide hexacyanidoruthenate frameworks for multicolor to white-light emission realized by the combination of d-d, d-f, and f-f electronic transitions[J]. Inorg. Chem., 2023,62(4):1611-1627. doi: 10.1021/acs.inorgchem.2c03885

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(8)
  • Abstract views(466)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return