Citation: Xin LU, Jianlei QIAN, Fayuan GE, Haotian LI, Hegen ZHENG, Chuanlei ZHANG. Modulating metal-organic framework structure by metal ion stimulation for photocatalytic CO2 reduction reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 209-220. doi: 10.11862/CJIC.20230377 shu

Modulating metal-organic framework structure by metal ion stimulation for photocatalytic CO2 reduction reaction

Figures(8)

  • A 2D Cd-based metal-organic framework with moderate coordination bond strength and adequate framework flexibility was obtained by self-assembly, namely {[Cd(HL)(BPY)0.5(H2O)]·2H2O}n (1), where H3L=4,4′,4″-(nitrilotris(methylene))tribenzoic acid, BPY=4,4′-bipyridine. Due to the unique structural features, under the stimulation of metal ions (Zn2+/Ni2+/Co2+), 1 gradually transforms into the MOF structures dominated by the corresponding metal ions (2, 3, and 4). During this process, with the exchanges of Cd2+→Zn2+, Cd2+→Ni2+, and Cd2+→Co2+, the free Cd2+ and L3- in the channel of 1 fuse with the backbone, leading to the channel space expansion and secondary building unit (SBU) transformation to form a tunable backbone. The photocatalytic CO2 reduction results show that the new structures obtained by ion exchange do not have a great improvement in catalytic efficiency, but have a great increase in product selectivity (3 demonstrated 100% CO selectivity).
  • 加载中
    1. [1]

      Liang J X, Yu H, Shi J J, Li B, Wu L X, Wang M. Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO2 to CO, morphologies, and composites[J]. Adv. Mater., 2023,35(10)2209814. doi: 10.1002/adma.202209814

    2. [2]

      Han C, Zhang X D, Huang S S, Hu Y, Yang Z, Li T T, Li Q P, Qian J J. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction[J]. Adv. Sci., 2023,10(19)2300797. doi: 10.1002/advs.202300797

    3. [3]

      Luo T, Gilmanova L, Kaskel S. Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations[J]. Coord. Chem. Rev., 2023,490215210. doi: 10.1016/j.ccr.2023.215210

    4. [4]

      Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chem. Rev., 2012,112(2):933-969. doi: 10.1021/cr200304e

    5. [5]

      ZHAO Y X, HU H, ZHOU X, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese J. Inorg. Chem., 2023,39(8):1553-1563.

    6. [6]

      Zhao X L, Sun W Y. The organic ligands with mixed N-/O-donors used in construction of functional metal-organic framework[J]. CrystEngComm, 2014,16:3247-3258. doi: 10.1039/c3ce41791c

    7. [7]

      Qian Z P, Zhang R, Xiao Y, Huang H W, Sun Y, Chen Y, Ma T Y, Sun X D. Trace to the source: Self-tuning of MOF photocatalysts[J]. Adv. Energy Mater., 2023(13)2300086.

    8. [8]

      Hu Y C, Zhang X, Khoo R S H, Fiankor C, Zhang X, Zhang J. Stepwise assembly of quinary multivariate metal-organic frameworks via diversified linker exchange and installation[J]. J. Am. Chem. Soc., 2023,145(25):13929-1393. doi: 10.1021/jacs.3c03421

    9. [9]

      Mukherjee G, Biradha K. Post-synthetic modification of isomorphic coordination layers: Exchange dynamics of metal ions in a single crystal to single crystal fashion[J]. Chem. Comm., 2012,48(36):4293-4295. doi: 10.1039/c2cc30983a

    10. [10]

      Brozek C K, Dincǎ M. Lattice-imposed geometry in metal-organic frameworks: Lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+[J]. Chem. Sci., 2012,3(6):2110-2113. doi: 10.1039/c2sc20306e

    11. [11]

      Das S, Kim H, Kim K. Metathesis in single crystal: Complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks[J]. J. Am. Chem. Soc., 2009,131(11):3814-3815. doi: 10.1021/ja808995d

    12. [12]

      Wei J X, Mu X J, Hu Y, Liu L L, Wu X X, Liu Q Y, Zhang T, Peng Y, Cao J, Yan C H, Tang Y. A general preparation of solid solution-oxide heterojunction photocatalysts through metal-organic framework transformation induced pre-nucleation[J]. Angew. Chem. Int. Ed., 2023(26)e202302986.

    13. [13]

      Kwon N H, Han S H, Kim J, Cho E S. Super proton conductivity through control of hydrogen-bonding networks in flexible metal-organic frameworks[J]. Small, 2023,19(32)2201122.

    14. [14]

      Li C, Wang K B, Li J Z, Zhang Q C. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks[J]. ACS Materials Lett., 2020,2(7):779-797. doi: 10.1021/acsmaterialslett.0c00148

    15. [15]

      Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers[J]. Angew. Chem. Int. Ed., 2004,43(18):2334-2375. doi: 10.1002/anie.200300610

    16. [16]

      Brozek C K, Dincă M. Cation exchange at the secondary building units of metalorganic frameworks[J]. Chem. Soc. Rev., 2014,43(16):5456-5467. doi: 10.1039/C4CS00002A

    17. [17]

      Prasad T K, Hong D H, Suh M P. High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups[J]. Chem.-Eur. J., 2010,16(47):14043-14050. doi: 10.1002/chem.201002135

    18. [18]

      Aslani A, Morsali A. Crystal-to-crystal transformation from a chain polymer to a two-dimensional network by thermal desolvation[J]. Chem. Commun., 2008(29):3402-3404. doi: 10.1039/b800126j

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

Metrics
  • PDF Downloads(1)
  • Abstract views(301)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return