Citation: Ping LIU, Chengcai ZHU, Yanyang LI, Hongchang YAO. Construction and photocatalytic CO2 reduction performance of S-scheme heterojunction ZnFe2O4/WO3 catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 197-208. doi: 10.11862/CJIC.20230376 shu

Construction and photocatalytic CO2 reduction performance of S-scheme heterojunction ZnFe2O4/WO3 catalysts

  • Corresponding author: Hongchang YAO, yaohongchang@zzu.edu.cn
  • Received Date: 11 October 2023
    Revised Date: 14 December 2023

Figures(13)

  • A series of ZnFe2O4/WO3 photocatalysts were constructed by loading ZnFe2O4 nanoparticles on the surface of WO 3 nanosheets, and their performance for photocatalytic CO2 reduction was studied. Under the conditions of no cocatalysts and sacrificial agents, the prepared ZnFe2O4/WO3 composite materials can catalyze the reaction between CO2 and water vapor. After illumination for 5 h, the yields of CO2 reduction products CO and CH4 of the optimal material were 7.87 and 4.88 μmol·g-1, respectively. Compared to its counterparts, the yields of CO and CH4 were improved. The increased photocatalytic activity of ZnFe2O4/WO3 is attributed to the formation of heterojunctions between ZnFe2O4 and WO3 as well as the S-scheme charge transfer mode of the photogenerated carriers, both of which are conducive to separation efficiency of photo-generated carriers and photocatalytic CO2 reduction activity.
  • 加载中
    1. [1]

      Ran J, Jaroniec M, Qiao S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities[J]. Adv. Mater., 2018,30(7)1704649. doi: 10.1002/adma.201704649

    2. [2]

      Nahar S, Zain M F M, Kadhum A A H, Hasan H A, Hasan M R. Advances in photocatalytic CO2 reduction with water: A review[J]. Materials, 2017,10(6)629. doi: 10.3390/ma10060629

    3. [3]

      Cokoja M, Bruckmeier C, Rieger B, Herrmann W A, Kuhn F E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?[J]. Angew. Chem. Int. Ed., 2011,50:8510-8537. doi: 10.1002/anie.201102010

    4. [4]

      Yang K H, Yang Z Z, Zhang C, Gu Y L, Wei J J, Li Z H, Ma C, Yang X, Song K X, Li Y M, Fang Q Z, Zhou J W. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion[J]. Chem. Eng. J., 2021,418129344. doi: 10.1016/j.cej.2021.129344

    5. [5]

      Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. J. Alloy. Compd., 2021,863158734. doi: 10.1016/j.jallcom.2021.158734

    6. [6]

      Sun, Younis, Kim, VanishKumar. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO2[J]. Sci. Total Environ., 2023,863160923. doi: 10.1016/j.scitotenv.2022.160923

    7. [7]

      Chandrasekaran S, Bowen C, Zhang P X, Li Z L, Yuan Q H, Ren X Z, Deng L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J. Mater. Chem. A, 2018,6:11078-11104. doi: 10.1039/C8TA03669A

    8. [8]

      Sun Z X, Wang H Q, Wu Z B, Wang L Z. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catal. Today, 2018,300:160-172. doi: 10.1016/j.cattod.2017.05.033

    9. [9]

      Wang Q T, Fang Z X, Zhang W, Zhang D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods[J]. Adv. Fiber Mater., 2022,4:342-360. doi: 10.1007/s42765-021-00122-7

    10. [10]

      Inoue T F A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277:637-638. doi: 10.1038/277637a0

    11. [11]

      Lee D K, Lee D H, Lumley M A, Choi K S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting[J]. Chem. Soc. Rev., 2019,48:2126-2157. doi: 10.1039/C8CS00761F

    12. [12]

      Pham T N, Huy T Q, Le A T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications[J]. RSC Adv., 2020,10:31622-31661. doi: 10.1039/D0RA05133K

    13. [13]

      Kim J H, Kim H E, Kim J H, Lee J S. Ferrites: Emerging light absorbers for solar water splitting[J]. J. Mater. Chem. A, 2020,8:9447-9482. doi: 10.1039/D0TA01554G

    14. [14]

      Sun H, Cai H, Li L L, Yang Y, He P, Zhou K, Han Y, Guan J, Fan X X. Photothermal synergic catalytic degradation of the gaseous organic pollutant isopropanol in oxygen vacancies utilizing ZnFe2O4[J]. J. Chem. Res., 2021,45:773-780. doi: 10.1177/1747519821999335

    15. [15]

      Chen J, Shen S H, Guo P H, Wu P, Guo L J. Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation[J]. J. Mater. Chem. A, 2014,2:4605-4612. doi: 10.1039/c3ta14811d

    16. [16]

      Hufnagel A G, Peters K, Müller A, Scheu C, Fattakhova-Rohlfing D, Bein T. Ferrite photoanode nanomorphologies with favorable kinetics for water-splitting[J]. Adv. Funct. Mater., 2016,26:4435-4443. doi: 10.1002/adfm.201600461

    17. [17]

      Xiao J, Yang W Y, Gao S, Sun C X, Li Q. Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination[J]. J. Mater. Sci. Technol., 2018,34:2331-2336. doi: 10.1016/j.jmst.2018.06.001

    18. [18]

      Yan Y L, Fang Q J, Pan J K, Yang J, Zhang L L, Zhang W, Zhuang G L, Zhong X, Deng S W, Wang J G. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles[J]. Chem. Eng. J., 2021,408127358. doi: 10.1016/j.cej.2020.127358

    19. [19]

      Gong E H, Ali S H, Hiragond C B, Kim H S, Powar N S, Kim D Y, Kim H, In S I. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy Environ. Sci., 2022,15:880-937. doi: 10.1039/D1EE02714J

    20. [20]

      Zhang G Q, Wang Z Q, Wu J H. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO2 reduction[J]. Nanoscale, 2021,13:4359-4389. doi: 10.1039/D0NR08442E

    21. [21]

      Liu Y Q, Yi W J, Li C Q, Du X, Liu Z Y, Yue X Z. Enwrapping ZnIn2S4 on vacancy-rich Nb2O5 nanoplates for enhanced photocatalytic hydrogen evolution[J]. Inorg. Chem. Front., 2024. doi: 10.1039/D3QI02049E

    22. [22]

      Lin M, Chen H, Zhang Z Z, Wan X X. Engineering interface structures for heterojunction photocatalysts[J]. Phys. Chem. Chem. Phys., 2023,25:4388-4407. doi: 10.1039/D2CP05281D

    23. [23]

      Marschall R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater., 2014,24:2421-2440. doi: 10.1002/adfm.201303214

    24. [24]

      Jia Y F, Han H, Luo Y, Wang Q Z, Lee B W, Liu C L. SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion[J]. Sep. Purif. Technol., 2023,306122667. doi: 10.1016/j.seppur.2022.122667

    25. [25]

      Li J D, Wei F, Dong C C, Mu W, Han X J. A Z-scheme ZnFe2O4/RGO/In2O3 hierarchical photocatalyst for efficient CO2 reduction enhancement[J]. J. Mater. Chem. A, 2020,8:6524-6531. doi: 10.1039/C9TA13774B

    26. [26]

      Mardare C C, Hassel A W. Review on the versatility of tungsten oxide coatings[J]. Phys. Status Solidi A-Appl. Mat., 2019,216(12)1900047. doi: 10.1002/pssa.201900047

    27. [27]

      Wang Y, Suzuki H, Xie J J, Tomita O, Martin D J, Higashi M, Kong D, Abe R, Tang J W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems[J]. Chem. Rev., 2018,118:5201-5241. doi: 10.1021/acs.chemrev.7b00286

    28. [28]

      Das K K, Mansingh S, Sahoo D P, Mohanty R, Parida K. Engineering an oxygen-vacancy-mediated step-scheme charge carrier dynamic coupling WO3-X/ZnFe2O4 heterojunction for robust photo-Fenton-driven levofloxacin detoxification[J]. New J. Chem., 2022,46:5785-5798. doi: 10.1039/D2NJ00067A

    29. [29]

      Chai B, Liu C, Yan J, Ren Z, Wang Z J. In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity[J]. Appl. Surf. Sci., 2018,448:1-8. doi: 10.1016/j.apsusc.2018.04.116

    30. [30]

      Ahmadpour N, Sayadi M H, Sobhani S, Hajiani M. A potential natural solar light active photocatalyst using magnetic ZnFe2O4@TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution[J]. J. Clean. Prod., 2020,268122023. doi: 10.1016/j.jclepro.2020.122023

    31. [31]

      Rawal S B, Kang H J, Won D I, Lee W I. Novel ZnFe2O4/WO3, A highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism[J]. Appl. Catal. B: Environ., 2019,256117856. doi: 10.1016/j.apcatb.2019.117856

    32. [32]

      Das K K, Sahoo D P, Mansingh S, Parida K. ZnFe2O4@WO3-X/polypyrrole: An efficient ternary photocatalytic system for energy and environmental application[J]. ACS Omega, 2021,6:30401-30418. doi: 10.1021/acsomega.1c03705

    33. [33]

      Iqbal F, Mumtaz A, Shahabuddin S, Abd Mutalib M I, Shaharun M S, Nguyen T D, Khan M R, Abdullah B. Photocatalytic reduction of CO2 to methanol over ZnFe2O4/TiO2 (p-n) heterojunctions under visible light irradiation[J]. J. Chem. Technol. Biotechnol., 2020,95:2208-2221. doi: 10.1002/jctb.6408

    34. [34]

      Shi W N, Wang J C, Guo X W, Qiao X, Liu F, Li R L, Zhang W Q, Hou Y X, Han H J. Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction[J]. Nano Res., 2022,15:5962-5969. doi: 10.1007/s12274-022-4271-0

    35. [35]

      Li B, Sun L, Bian J, Sun N, Sun J, Chen L, Li Z, Jing L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction[J]. Appl. Catal. B: Environ., 2020,270118849. doi: 10.1016/j.apcatb.2020.118849

    36. [36]

      Lan Y Y, Liu Z F, Guo Z G, Ruan M N, Xin Y. Accelerating the charge separation of ZnFe2O4 nanorods by Cu-Sn ions gradient doping for efficient photoelectrochemical water splitting[J]. J. Colloid Interface Sci., 2019,552:111-121. doi: 10.1016/j.jcis.2019.05.041

    37. [37]

      Zhang X H, Lin B Y, Li X Y, Wang X, Huang K Z, Chen Z H. MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal[J]. Chem. Eng. J., 2022,430132728. doi: 10.1016/j.cej.2021.132728

    38. [38]

      Bai S L, Zuo Y, Zhang K W, Zhao Y Y, Luo R X, Li D Q, Chen A F. WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine[J]. Sens. Actuators B-Chem., 2021,347130619. doi: 10.1016/j.snb.2021.130619

    39. [39]

      Sun Y Y, Wang W Z, Zhang L, Sun S M, Gao E P. Magnetic ZnFe2O4 octahedra: Synthesis and visible light induced photocatalytic activities[J]. Mater. Lett., 2013,98:124-127. doi: 10.1016/j.matlet.2013.02.014

    40. [40]

      Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl. Catal. B: Environ., 2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011

    41. [41]

      Li C Q, Yi S S, Liu Y, Niu Z L, Yue X Z, Liu Z Y. In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution[J]. Chem. Eng. J., 2021,417129231. doi: 10.1016/j.cej.2021.129231

    42. [42]

      Zhang X, Hao W, Tsang C S, Liu M, Hwang G S, Lee L Y S. Psesudocubic phase tungsten oxide as a photocatalyst for hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,2:8792-8800. doi: 10.1021/acsaem.9b01790

    43. [43]

      Xiong J, Song P, Di J, Li H M. Ultrathin structured photocatalysts: A versatile platform for CO2 reduction[J]. Appl. Catal. B: Environ., 2019,256117789. doi: 10.1016/j.apcatb.2019.117789

    44. [44]

      Long R, Li Y, Liu Y, Chen S M, Zheng X S, Gao C, He C H, Chen N S, Qi Z M, Song L, Jiang J, Zhu J F, Xiong Y J. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. J. Am. Chem. Soc., 2017,139:4486-4492. doi: 10.1021/jacs.7b00452

    45. [45]

      Zhu C C, Jiang T, Yang H C, Li Y Y, Li Z J, Yao H C. ZnFe2O4 nanoparticles with iron-rich surfaces for enhanced photocatalytic water vapor splitting[J]. Appl. Surf. Sci., 2023,636157842. doi: 10.1016/j.apsusc.2023.157842

    46. [46]

      Li C Q, Yi S S, Chen D, Liu Y, Li Y J, Lu S Y, Yue X Z, Liu Z Y. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production[J]. J. Mater. Chem. A, 2019,7:17974-17980. doi: 10.1039/C9TA03701B

    47. [47]

      Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. S-Scheme heterojunction photocatalyst[J]. Chem, 2020,6:1543-1559. doi: 10.1016/j.chempr.2020.06.010

    48. [48]

      Wang L B, Cheng B, Zhang L Y, Yu J G. In situ irradiated XPS investigation on S-Scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021,172103447. doi: 10.1002/smll.202103447

    49. [49]

      Zhou Y P, Jiao W Y, Xie Y, He F, Ling Y, Yang Q, Zhao J S, Ye H, Hou Y. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst[J]. J. Colloid Interface Sci., 2022,608:2213-2223. doi: 10.1016/j.jcis.2021.10.053

    50. [50]

      Zhang L Y, Zhang J J, Yu H G, Yu J G. Emerging S-scheme photocatalyst[J]. Adv. Mater., 2022,342107668. doi: 10.1002/adma.202107668

    51. [51]

      Wei Q G, Hao L L, Zhi J, Wen F S. In-situ pressure-induced BiVO4-Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity[J]. Chin. J. Catal., 2022,43:316-328. doi: 10.1016/S1872-2067(21)63846-9

    52. [52]

      Chen Y, Yang W Y, Gao S, Sun C X, Li Q. Synthesis of Bi2MoO6 nanosheets with rich oxygen vacancies by postsynthesis etching treatment for enhanced photocatalytic performance[J]. ACS Appl. Nano Mater., 2018,1:3565-3578. doi: 10.1021/acsanm.8b00719

    53. [53]

      Dang H F, Qiu Y F, Cheng Z Y, Yang W, Wu H Y, Fan H B, Dong X F. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application[J]. Ceram. Int., 2016,42:10520-10525. doi: 10.1016/j.ceramint.2016.03.019

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    4. [4]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    7. [7]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(2)
  • Abstract views(306)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return