Citation: Lixu LEI. Route map for 100% completion of solid-state reactions[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 182-196. doi: 10.11862/CJIC.20230375 shu

Route map for 100% completion of solid-state reactions

  • Corresponding author: Lixu LEI, Lixu.lei@seu.edu.cn
  • Received Date: 11 October 2023
    Revised Date: 18 December 2023

Figures(4)

  • Although thermodynamics tells us that solid-state reactions without solution will not stop until 100% completion, they may stop far before the exhaust of reactants because of the difficulty of mass transfer among the solid particles. To solve this problem, the author has publicized a novel technique called the less solvent solid-state reaction (LSR), which makes small parts of the solid reactants dissolve and react in a small amount of solvent, thus making the reaction proceed faster and more complete in a stirred reactor. Consequently, LSR could make some of the industrial processes greener. By using numerical calculating and charting of its Gibbs energies with respect to its extent of reaction, this paper proves that (ⅰ) an LSR is a combination of a reaction thermodynamically equivalent to a solution-free solid-state reaction in the middle and semi-solution reactions at both ends. Although the LSR does reach an equilibrium eventually, it goes much further to the 100% completion than the solution reaction; if the solvent is removed gradually at the ending period of the reaction, the LSR can be pushed to 100% completion; (ⅱ) for the consecutive reactions, it is possible to get the sole intermediate product by controlling the molar ratio of the reactants as its stoichiometric ratio; (ⅲ) it is possible to make an LSR with near-zero negative ΔrGmΘ 100% completed by using more solvent or using the solid products as seeds; (ⅳ) it is the dissolution speed of reactants, the speed of chemical reaction, and crystallization speed of products, rather than the solubilities of the substances that control the speed of an LSR. Measures for 100% completion and selection of LSRs of non-spontaneous or coexisting competitive reactions are also discussed.
  • 加载中
    1. [1]

      XIN X Q, ZHENG L M. Solid state synthetic reaction at low heating temperatures[J]. University Chemistry, 1994,9(6):1-7.

    2. [2]

      Kaupp G. Organic solid-state reactions with 100% yield[J]. Top. Curr. Chem., 2005,254:95-183.

    3. [3]

      Toda F. Solid-state organic chemistry: Efficient reactions, remarkable yields, and stereoselectivity[J]. Acc. Chem. Res., 1995,28(12):480-486. doi: 10.1021/ar00060a003

    4. [4]

      YANG C F, LIU W, LIN S Z, XU Z G, CHEN T, WEI T Q, LI B B. Application of the solvent-free method in asymmetric addition reaction of organozinc with aldehyde or ketone[J]. Chinese Journal of Synthetic Chemistry, 2016,24(5):464-468.

    5. [5]

      Sarkar A, Santra S, Kundu S K, Hajra A, Zyryanov G V, Chupakhin O N, Charushin V N, Majee A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability[J]. Green Chem., 2016,18(16):4475-4525. doi: 10.1039/C6GC01279E

    6. [6]

      LEI L X, ZHOU Y M. Solvent-free or less-solvent solid state reactions[J]. Prog. Chem., 2020,32(8):1158-1171.

    7. [7]

      JIANG H L, LIU C, LEI L X. Ammonium carnallite prepared from a less-solvent solid state reaction[J]. University Chemistry, 2021,36(12)2102008.

    8. [8]

      Wang H L, Liu C, Jiang H L, Guo Z L, Zheng Y P, Qi Q, Lei L X. A laboratory experiment on preparation of 3PbO·PbSO4·H2O using less solvent solid state reaction for undergraduate students[J]. Educ. Chem. Eng., 2023,43:92-99. doi: 10.1016/j.ece.2023.02.003

    9. [9]

      Guo Z L, Ma L, Wang H L, Lai C G, Ji S, Sun J, Zhang D H, Nie L, Lei L X. Less solvent solid state reaction of sodium sulfite and sulfur. Inorg[J]. Chem. Commun., 2023,151110619.

    10. [10]

      Mason P E, Schewe H C, Buttersack T, Kostal V, Vitek M, McMullen R S, Ali H, Trinter F, Lee C, Neumark D M, Thürmer S, Seidel R, Winter B, Bradforth S E, Jungwirth P. Spectroscopic evidence for a gold-coloured metallic water solution[J]. Nature, 2021,595(7869):673-676. doi: 10.1038/s41586-021-03646-5

    11. [11]

      Feng D F, Kevan L. Theoretical-models for solvated electrons[J]. Chem. Rev., 1980,80(1):1-20. doi: 10.1021/cr60323a001

    12. [12]

      HU C J, MA J. An overview of solvated electrons: recent advances[J]. Journal of Radiation Research and Radiation Processing, 2021,39(1):1-14.

    13. [13]

      Kamyshny A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures[J]. Geochim. Cosmochim. Acta, 2009,73(20):6022-6028. doi: 10.1016/j.gca.2009.07.003

    14. [14]

      Pavlov D. Lead-acid batteries-science & technology. 2nd ed. Amsterdam: Elsevier, 2017.

    15. [15]

      Steele I M, Pluth J J, Richardson Jr J W. Crystal structure of tribasic lead sulfate (3PbO·PbSO4·H2O) by X-rays and neutrons: An intermediate phase in the production of lead acid batteries[J]. J. Solid State Chem., 1997,132(1):173-181. doi: 10.1006/jssc.1997.7440

    16. [16]

      Moseley P T, Rand D A J. Neutron diffraction enables the formula of 'tribasic lead sulfate' to be corrected[J]. J. Energy Storage, 2023,65107423. doi: 10.1016/j.est.2023.107423

    17. [17]

      WANG H L. Researches on a few less solvent solid state reactions. Nanjing: Southeast University, 2023.

    18. [18]

      Fogel N, Lin C C, Ford C, Grindstaff W. Behavior of ammonium tetrachlorocobaltate(Ⅱ) on hydration[J]. Inorg. Chem., 2002,3(5):720-726.

    19. [19]

      Li C X, Lei L X, Xin X Q. Synthesis of M(biN)nCl2 by solid-solid reactions[J]. Chin. Sci. Bull., 1994,39:349-350.

    20. [20]

      Lei L X, Wang Z X, Xin X Q. The solid state reaction of CuCl2·2H2O and 8-hydroxylquinoline[J]. Thermochim. Acta, 1997,297(1/2):193-197.

    21. [21]

      Lei L X, Xin X Q. Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction[J]. Thermochim. Acta, 1996,273:61-67. doi: 10.1016/0040-6031(95)02683-5

    22. [22]

      Lei L X, Xin X Q. Stepwise reaction of CuCl2·2H2O with 2,2'-bipyridyl in the solid state[J]. J. Solid State Chem., 1995,119(2):299-303. doi: 10.1016/0022-4596(95)80044-P

    23. [23]

      Lei L X, Jing S, Walton R I, Xin X Q, O'Hare D. Investigation of the solid state reaction of FeSO4·7H2O with 1,10-phenanthroline[J]. J. Chem. Soc. Dalton Trans., 2002(18):3477-3481. doi: 10.1039/b205625a

    24. [24]

      WANG H L, GUO Z L, LIU B Z, WU Z Z, LEI L X. Less solvent solid-state consecutive coordination reaction of copper chloride[J]. Chinese J. Inorg. Chem., 2023,39(8):1536-1544.

    25. [25]

      Speight J G. Lange's Handbook of Chemistry. 16th ed. New York: MCGRAW-HILL, 2005.

    26. [26]

      Verduzco-Oliva R, Gutierrez-Uribe J A. Beyond enzyme production: Solid state fermentation (SSF) as an Alternative approach to produce antioxidant polysaccharides[J]. Sustainability, 2020,12(2)495. doi: 10.3390/su12020495

    27. [27]

      WANG N N, WANG G W. Investigation into condensed-matter organic synthesis under mechanical milling conditions[J]. Prog. Chem., 2020,32(8):1076-1085.

  • 加载中
    1. [1]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    2. [2]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    3. [3]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    4. [4]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    5. [5]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    8. [8]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    9. [9]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    17. [17]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    18. [18]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    19. [19]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    20. [20]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(2)
  • Abstract views(285)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return