Citation: Ning LI, Siyu DU, Xueyi WANG, Hui YANG, Tao ZHOU, Zhimin GUAN, Peng FEI, Hongfang MA, Shang JIANG. Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372 shu

Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid

Figures(7)

  • A new polyoxovanadate compound [Co(pIM)V2O6] (1) was hydrothermally synthesized, where pIM stands for 2-(2-pyridyl)imidazole. For its characterizations, an integration of X-ray single crystal diffraction, powder X-ray diffraction, Fourier transform infrared spectra, and elemental analysis was accomplished. The compound exhibited a 2D architecture composed of VO4 tetrahedra and CoO3N2 square pyramids via both edge - and corner - sharing. Considering the excellent catalytic oxidation features of polyoxovanadate, compound 1 was used as an efficient heterogeneous catalyst for the epoxidation of olefins with H2O2 as an oxidant, and could be reused without consuming activity. Besides, the magnetic studies indicated the antiferromagnetic interactions in 1.
  • 加载中
    1. [1]

      Yang H, Dai K, Zhang J F, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications[J]. Chin. J. Catal., 2022,43(8):2111-2140. doi: 10.1016/S1872-2067(22)64096-8

    2. [2]

      Lu B B, Xing Z X, Bao Y S, Ye F, Fu Y. Selective luminescent sensing of teflubenzuron and oxyfluorfen by a resorcin[4]arene-based metal-organic framework[J]. Chem. Eng. J., 2023,452139234. doi: 10.1016/j.cej.2022.139234

    3. [3]

      LI J K, ZHAO S H, HU C W. Polyoxometalate-based host-guest framework materials POMs@MOFs(COFs)[J]. Chinese J. Inorg. Chem., 2019,35(11):1934-1956.

    4. [4]

      Seemann K M, Bauer A, Kindervater J, Meyer M, Besson C, Luysberg M, Durkin P, Pyckhout-Hintzen W, Budisa N, Georgii R, Schneider C M, Kögerler P. Polyoxometalate-stabilized, water dispersible Fe2Pt magnetic nanoparticles[J]. Nanoscale, 2013,5(6):2511-2519. doi: 10.1039/c3nr33374d

    5. [5]

      GUO T T, AN Y Y, ZHAO D, YAN J Z. Polyoxometalate-directing calix[4]resorcinarene-based giant[Co8]coordination cage: Self-assembly and electrochemical performance[J]. Chinese J. Inorg. Chem., 2023,39(9):1791-1799.  

    6. [6]

      Peng J B, Zhang Q C, Kong X J, Ren Y P, Long L S, Huang R B, Zheng L S, Zheng Z P. A 48-metal cluster exhibiting a large magnetocaloric effect[J]. Angew. Chem. Int. Ed., 2011,50(45):10649-10652. doi: 10.1002/anie.201105147

    7. [7]

      Pradeep C P, Misdrahi M F, Li F Y, Zhang J, Xu L, Long D L, Liu T B, Cronin L. Synthesis of modular "inorganic-organic-inorganic" polyoxometalates and their assembly into vesicles[J]. Angew. Chem. Int. Ed., 2009,48(44):8309-8313. doi: 10.1002/anie.200903070

    8. [8]

      Li N, Yue C Y, Yang H, Song J, Li J W, Pan Q L, Jiang S, Zhao J G, Yu D. Oxidative desulfurization and magnetic properties of a mixed-valence cobalt vanadate[J]. Polyhedron, 2022,226116077. doi: 10.1016/j.poly.2022.116077

    9. [9]

      Hu N, Du J, Ma Y Y, Cui W J, Yu B R, Han Z G, Li Y G. Unravelling the role of polyoxovanadates in electrocatalytic water oxidation reaction: Active species or precursors[J]. Appl. Surf. Sci., 2021,540148306. doi: 10.1016/j.apsusc.2020.148306

    10. [10]

      YING J, ZHANG B Y, TIAN A X. Four keggin compounds modified by tri-and tetra-nuclear metal-organic clusters: Structures, selective photocatalytic and Hg2+ recognition characteristics[J]. Chinese J. Inorg. Chem., 2020,36(10):1831-1844.  

    11. [11]

      Tian H R, Zhang Z, Liu S M, Dang T Y, Li Z, Lu Y, Liu S X. A highly stable polyoxovanadate-based Cu(Ⅰ)-MOF for the carboxylative cyclization of CO2 with propargylic alcohols at room temperature[J]. Green Chem., 2020,22(21):7513-7520. doi: 10.1039/D0GC02812F

    12. [12]

      Huang X X, Zhou Z, Qin L, Zhang D P, Wang H N, Wang S N, Yang L. Structural regulation of two polyoxometalate-based metal-organic frameworks for the heterogeneous catalysis of quinazolinones[J]. Inorg. Chem., 2023,62(14):5565-5575. doi: 10.1021/acs.inorgchem.3c00055

    13. [13]

      Huo Y, Huo Z Y, Ma P T, Wang J P, Niu J Y. Polyoxotungstate incorporating organotriphosphonate ligands: Synthesis, characterization, and catalytic for alkene epoxidation[J]. Inorg. Chem., 2015,54(2):406-408. doi: 10.1021/ic502404m

    14. [14]

      Huber S, Cokoja M, Kuehn F E. Historical landmarks of the application of molecular transition metal catalysts for olefin epoxidation[J]. J. Organomet. Chem., 2014,751:25-32. doi: 10.1016/j.jorganchem.2013.07.016

    15. [15]

      Sen R, Saha D, Mal D, Brandão P, Rogez G, Lin Z. Synthesis, structural aspects and catalytic performance of a tetrahedral cobalt phosphonate framework[J]. Eur. J. Inorg. Chem., 2013:5020-5026.

    16. [16]

      Taghiyar H, Yadollahi B. New perspective to catalytic epoxidation of olefins by Keplerate containing Keggin polyoxometalates[J]. Polyhedron, 2018,156:98-104. doi: 10.1016/j.poly.2018.09.015

    17. [17]

      Xiao W R, Li S J, Zhao Y, Ma Y B, Li N, Zhang J, Chen X N. Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursors: Synthesis, structures and catalytic performance[J]. Dalton Trans., 2021,50(25):8690-8695. doi: 10.1039/D1DT00924A

    18. [18]

      Zhang J L, Zhao Q X, Cheng M Y, Xuan W M, Liu Y. Polyoxovanadate-based metal-organic frameworks consisted of open vanadium sites for selective catalytic oxidation of sulfides[J]. Tungsten, 2023,5(2):261-269. doi: 10.1007/s42864-022-00199-6

    19. [19]

      Wang X, Zhang T, Li Y H, Lin J F, Li H, Wang X L. In situ ligand-transformation-involved synthesis of inorganic-organic hybrid polyoxovanadates as efficient heterogeneous catalysts for the selective oxidation of sulfides[J]. Inorg. Chem., 2020,59(23):17583-17590. doi: 10.1021/acs.inorgchem.0c02798

    20. [20]

      LI J K, HU C W. Progress in polyoxovanadate chemistry[J]. Chinese J. Inorg. Chem., 2015,31(9):1705-1725.  

    21. [21]

      Wang S, Liu Y W, Zhang Z, Li X H, Tian H R, Yan T T, Zhang X, Liu S M, Sun X W, Xu L, Luo F, Liu S X. One-step template-free fabrication of ultrathin mixed-valence polyoxovanadate-incorporated metal-organic framework nanosheets for highly efficient selective oxidation catalysis in air[J]. ACS Appl. Mater. Interfaces, 2019,11(13):12786-12796. doi: 10.1021/acsami.9b00908

    22. [22]

      Li J, Zhang D, Chi Y N, Hu C W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules[J]. Polyoxometalates, 2022,1(2)9140012. doi: 10.26599/POM.2022.9140012

    23. [23]

      Niu Y H, Yang S, Li J K, Xu Y Q, Hu C W. Design and synthesis of hybrid solids based on the tetravanadate core toward improved catalytic properties[J]. Chin. Chem. Lett., 2016,27(5):649-654. doi: 10.1016/j.cclet.2016.01.007

    24. [24]

      Patil M V, Yadav M K, Jasra R V. Catalytic epoxidation of α-pinene with molecular oxygen using cobalt(Ⅱ)-exchanged zeolite Y-based heterogeneous catalysts[J]. J. Mol. Catal. A-Chem., 2007,277(1/2):72-80.

    25. [25]

      Tonigold M, Lu Y, Mavrandonakis A, Plus A, Staudt R, Möllmer J, Sauer J, Volkmer D. Pyrazolate-based cobalt(Ⅱ)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: Elucidating the role of entatic states for biomimetic oxidation processes[J]. Chem.-Eur. J., 2011,17(31):8671-8695. doi: 10.1002/chem.201003173

    26. [26]

      Zhou W L, Peng J, Zhang Z Y, Shi Z Y, Khana S U, Liu H S. Assembly of hybrids based on polyoxotungstates and Co-tris (imidazolyl) complexes with bifunctional electrocatalytic activities[J]. RSC Adv., 2015,5(45):35753-35759. doi: 10.1039/C5RA01165E

    27. [27]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    28. [28]

      Hu Y, Luo F, Dong F F. Design synthesis and photocatalytic activity of a novel lilac-like silver-vanadate hybrid solid based on dicyclic rings of[V4O12]4- with {Ag7}7+ cluster[J]. Chem. Commun., 2011,47(2):761-763. doi: 10.1039/C0CC02965C

    29. [29]

      Wu S J, Yang X H, Hu J F, Ma H W, Lin Z G, Hu C W. Synthesis, structure and characterization of three different dimension inorganic-organic hybrid vanadates: [Co2(mIM)5(H2O)2]V4O12, [Ni2(mIM)7(H2O)]V4O12·H2O and[Cd(eIM)2(H2O)]V2O6[J]. CrystEngComm, 2015,17(7):1625-1630. doi: 10.1039/C4CE02335H

    30. [30]

      Larrea E S, Mesa J L, Pizarro J L, Rodríguez-Fernández J, Arriortua M I, Rojo T. Mild hydrothermal synthesis and structural determination of two layered, structurally related inorganic-organic hybrid vanadates with nickel(Ⅱ) and tris (2-aminoethyl) amine[J]. Eur. J. Org. Chem., 2009,24:3607-3612.

    31. [31]

      Li J K, Huang X Q, Yang S, Xu Y Q, Hu C W. Controllable synthesis, characterization, and catalytic properties of three inorganic-organic hybrid copper vanadates in the highly selective oxidation of sulfides and alcohols[J]. Cryst. Growth Des., 2015,15(4):1907-1914. doi: 10.1021/acs.cgd.5b00086

    32. [32]

      Tian H R, Zhang Z, Liu S M, Dang T Y, Li X H, Lu Y, Liu S X. A novel polyoxovanadate-based Co-MOF: Highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis[J]. J. Mater. Chem. A, 2020,8(25):12398-12405. doi: 10.1039/D0TA00537A

    33. [33]

      Han Q X, Li W W, Wang S G, He J C, Du W, Li M X. Asymmetric cascade catalysis with chiral polyoxometalate-based frameworks: Sequential direct aldol and epoxidation reactions[J]. ChemCatChem, 2017,9(10):1801-1807. doi: 10.1002/cctc.201700160

    34. [34]

      Solé-Daura A, Zhang T, Fouilloux H, Robert C, Thomas C M, Chamoreau L M, Carbó J J, Proust A, Guillemot G, Poblet J M. Catalyst design for alkene epoxidation by molecular analogues of heterogeneous titanium-silicalite catalysts[J]. ACS Catal., 2020,10(8):4737-4750. doi: 10.1021/acscatal.9b05147

    35. [35]

      Clemente-Juan J M, Coronado E, Gaita-Ariño A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing[J]. Chem. Soc. Rev., 2012,41(22):7464-7478. doi: 10.1039/c2cs35205b

    36. [36]

      Xu J H, Guo L Y, Su H F, Gao X, Wu X F, Wang W G, Tung C H, Sun D. Heptanuclear Co5Co2 cluster as efficient water oxidation catalyst[J]. Inorg. Chem., 2017,56(3):1591-1598. doi: 10.1021/acs.inorgchem.6b02698

    37. [37]

      Sasaki S, Yonesato K, Mizuno N, Yamaguchi K, Suzuki K. Ring-shaped polyoxometalates possessing multiple 3d metal cation sites: [{M2(OH2)2}2{M(OH2)2}4P8W48O176(OCH3)8]16- (M=Mn, Co, Ni, Cu, Zn)[J]. Inorg. Chem., 2019,58(12):7722-7729. doi: 10.1021/acs.inorgchem.9b00061

    38. [38]

      LI F F, HE J. Synthesis, structural and magnetic characterization of Fe(Ⅱ)/Co(Ⅱ) isomorphous complexes based on a dipyrazole-containing tetracarboxylate ligand[J]. Chinese J. Inorg. Chem., 2022,38(11):2259-2266.  

    39. [39]

      Gao G G, Xu L, Wang W J, Qu X S, Liu H, Yang Y Y. Cobalt(Ⅱ)/nickel(Ⅱ)-centered Keggin-type heteropolymolybdates: Syntheses, crystal structures, magnetic and electrochemical properties[J]. Inorg. Chem., 2008,47(7):2325-2333. doi: 10.1021/ic700797v

    40. [40]

      Guo L Y, Zeng S Y, Jagličić Z, Hu Q D, Wang S X, Wang Z, Sun D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate[J]. Inorg. Chem., 2016,55(17):9006-9011. doi: 10.1021/acs.inorgchem.6b01468

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    3. [3]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    6. [6]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    7. [7]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    13. [13]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    14. [14]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    15. [15]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    20. [20]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

Metrics
  • PDF Downloads(0)
  • Abstract views(70)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return