Citation: Peiran ZHAO, Yuqian LIU, Cheng HE, Chunying DUAN. A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355 shu

A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene

  • Corresponding author: Chunying DUAN, cyduan@dlut.edu.cn
  • Received Date: 26 September 2023
    Revised Date: 11 January 2024

Figures(20)

  • A functional 3D lanthanide metal-organic framework (Eu-4L) was successfully designed and synthesized by solvothermal method. The ligand of Eu-4L is a kind of diphenylamine tetracarboxylic acid derivative (named H4L). The specific surface area of Eu-4L was high, which made Eu-4L have an excellent 3D structure. Eu-4L had good thermostability and can remain stable in water of pH from 3 to 11. Eu-4L can be used as a fluorescent probe for sensing pyrene. The limit of detection of Eu-4L for sensing pyrene was 5 μmol·L-1, which displays high sensitivity. Eu-4L is also a kind of recyclable material. The fluorescence sensing mechanism of Eu-4L for sensing pyrene belongs to the static mechanism. Moreover, the selectivity and competition of Eu-4L are also discussed.
  • 加载中
    1. [1]

      Ye Q B, Xi X Y, Fan D P, Cao X X, Wang Q, Wang X, Zhang M X, Wang B L, Tao Q W, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis[J]. Biomed. Pharmacother., 2022,146112547. doi: 10.1016/j.biopha.2021.112547

    2. [2]

      Pla P, Wang Y, Martin F, Alcami M. Hydrogenated polycyclic aromatic hydrocarbons: Isomerism and aromaticity[J]. Phys. Chem. Chem. Phys., 2020,22:21968-21976. doi: 10.1039/D0CP04177G

    3. [3]

      Zuo X W, Jahanbani A, Cancan M. On molecular descriptors of polycyclic aromatic hydrocarbon[J]. Polycycl. Aromat. Compd., 2022,42:3422-3433. doi: 10.1080/10406638.2020.1867203

    4. [4]

      Li G T, Xiong H, Saeed K, Ma R C, Xing Y F, Bi Y J, Li C Y, Huang J H, Zhang Y C. Comparative toxicity analysis of corannulene and benzo[J]. Toxicol. Lett., 2020,331:130-142. doi: 10.1016/j.toxlet.2020.05.002

    5. [5]

      Costa C, Catania S, Pasquale R D, Stancanelli R, Scribano G M, Melchini A. Exposure of human skin to benzo[J]. Toxicology, 2010,271:83-86. doi: 10.1016/j.tox.2010.02.014

    6. [6]

      Lee C M, Chen S Y, Lee Y C G, Huang C Y F, Chen Y M A. Benzo[J]. Toxicol. Appl. Pharmacol., 2006,214:126-135. doi: 10.1016/j.taap.2005.12.020

    7. [7]

      Long Q, Fang A J, Wen Y Q, Li H T, Zhang Y Y, Yao S Z. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect[J]. Biosens. Bioelectron., 2016,86:109-114. doi: 10.1016/j.bios.2016.06.017

    8. [8]

      Xu X, Nan D Y, Yang H, Pan S, Liu H, Hu X L. Quercetin@ZIF-90 as a novel antioxidant for label-free colorimetric ATP sensing at neutral pH[J]. Sens. Actuator B-Chem., 2020,304127324. doi: 10.1016/j.snb.2019.127324

    9. [9]

      Xie H, Chai Y Q, Yuan Y L, Yuan R. Highly effective molecule converting strategy based on enzyme-free dual recycling amplification for ultrasensitive electrochemical detection of ATP[J]. Chem. Commun., 2017,53:8368-8371. doi: 10.1039/C7CC03497K

    10. [10]

      Yao W, Wang L, Wang H Y, Zhang X L, Li L. An aptamer-based electrochemiluminescent biosensor for ATP detection[J]. Biosens. Bioelectron., 2009,24:3269-3274. doi: 10.1016/j.bios.2009.04.016

    11. [11]

      Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem. Soc. Rev., 2014,43:5415-5418. doi: 10.1039/C4CS90059F

    12. [12]

      Chen Y, Li P, Modica J A, Drout R J, Farha O K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release[J]. J. Am. Chem. Soc., 2018,140:5678-5681. doi: 10.1021/jacs.8b02089

    13. [13]

      Wang M, Guo L, Cao D P. Amino-functionalized luminescent metal-organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect[J]. Anal. Chem., 2018,90:3608-3614. doi: 10.1021/acs.analchem.8b00146

    14. [14]

      Lin R B, Xiang S C, Li B, Cui Y J, Qian G D, Zhou W, Chen B L. Our journey of developing multifunctional metal-organic frameworks[J]. Coord. Chem. Rev., 2019,384:21-36. doi: 10.1016/j.ccr.2019.01.009

    15. [15]

      YU L T, LI Q Y, SHEN Z, LÜ W J, ZHAO Q. Synthesis, fluorescence, and magnetic characterization of nicotinic acid ligand-based dysprosium, holmium, erbium, and thulium complexes[J]. Chinese J. Inorg. Chem., 2023,39(11):2181-2187. doi: 10.11862/CJIC.2023.187

    16. [16]

      LIU W T, YANG X, CHAI H M, REN Y X, HOU X F, WANG J J. Fluorescence sensing on nitrobenzene of two-dimensional Zn-coordination polymers based on tricarboxylate isomers[J]. Chinese J. Inorg. Chem., 2023,39(8):1610-1618.  

    17. [17]

      SHI Z X, LU Y, WANG J, GUAN X, SHI J, JIANG H. Preparation and upconversion luminescence properties of Er3+/Yb3+ co-doped NaY(WO4)2 phosphors[J]. Chinese J. Inorg. Chem., 2018,34(11):1975-1982. doi: 10.11862/CJIC.2018.229

    18. [18]

      Bunzli J C G. On the design of highly luminescent lanthanide complexes[J]. Coord. Chem. Rev., 2015,293(SI):19-47.

    19. [19]

      Zhang X J, Wang W J, Hu Z J, Wang G N, Uvdal K. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives[J]. Coord. Chem. Rev., 2015,284:206-235. doi: 10.1016/j.ccr.2014.10.006

    20. [20]

      Qin X, Liu X W, Huang W, Bettinelli M, Liu X G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects[J]. Chem. Rev., 2017,117:4488-4527. doi: 10.1021/acs.chemrev.6b00691

    21. [21]

      Chen B L, Xiang S C, Qian G D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Acc. Chem. Res., 2010,43:1115-1124. doi: 10.1021/ar100023y

    22. [22]

      ZHENG H, JIAO Y, FENG S S. Synthesis, structure, luminescence, photocatalytic and magnetic properties of a neodymium complex constructed from biphenyl-3,4',5-tricarboxylic acid[J]. Chinese J. Inorg. Chem., 2021,37(9):1691-1699.

    23. [23]

      LIU M R, WANG J J, YUE E J, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, structure, magnetic, and fluorescent sensing properties of cobalt(Ⅱ) coordination polymer based on 1-(3,5-dicarboxybenzyl)-1H-pyrazole-3,5-dicarboxylic acid[J]. Chinese J. Inorg. Chem., 2022,38(8):1601-1608.  

    24. [24]

      Meng L K, Liu K, Fu S, Wang L, Liang C, Li G H, Li C G, Shi Z. Microporous Cu metal-organic framework constructed from V-shaped tetracarboxylic ligand for selective separation of C2H2/CH4 and C2H2/N2 at room temperature[J]. J. Solid State Chem., 2018,265:285-290. doi: 10.1016/j.jssc.2018.06.009

    25. [25]

      Zhao P R, Liu Y Q, He C, Duan C Y. Synthesis of a lanthanide metal-organic framework and its fluorescent detection for phosphate group-based molecules such as adenosine triphosphate[J]. Inorg. Chem., 2022,61:3132-3140. doi: 10.1021/acs.inorgchem.1c03412

    26. [26]

      Yao Z Q, Li G Y, Xu J, Hu T L, Bu X H. A water-stable luminescent Zn metal-organic framework as chemosensor for high-efficiency detection of Cr-anions (Cr2O72- and CrO42-) in aqueous solution[J]. Chem.-Eur. J., 2018,24:3192-3198. doi: 10.1002/chem.201705328

    27. [27]

      Hu Z C, Lusting W P, Zhang J M, Zheng C, Wang H, Teat S J, Gong Q H, Rudd N D, Li J. Effective detection of mycotoxins by a highly luminescent metal-organic framework[J]. J. Am. Chem. Soc., 2015,137:16209-16215. doi: 10.1021/jacs.5b10308

    28. [28]

      Rudd N D, Wang H, Fuentes-Fernandez E M A, Teat S J, Chen F, Hall G, Chabal Y J, Li J. Highly efficient luminescent metal-organic framework for the simultaneous detection and removal of heavy metals from water[J]. ACS Appl. Mater. Interfaces, 2016,8:30294-30303. doi: 10.1021/acsami.6b10890

    29. [29]

      Xu H, Gao J K, Qian X F, Wang J P, He H J, Cui Y J, Yang Y, Wang Z Y, Qian G D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+[J]. J. Mater. Chem. A, 2016,4:10900-10905. doi: 10.1039/C6TA03065C

    30. [30]

      Zhu S Y, Yan B. A novel sensitive fluorescent probe of S2O82- and Fe3+ based on covalent post-functionalization of a zirconium(Ⅳ) metal-organic framework[J]. Dalton Trans., 2018,47:11586-11592. doi: 10.1039/C8DT02051E

    31. [31]

      Dong J, Xu H, Hou S L, Wu Z L, Zhao B. Metal-organic frameworks with Tb4 clusters as nodes: Luminescent detection of chromium(Ⅵ) and chemical fixation of CO2[J]. Inorg. Chem., 2017,56:6244-6250. doi: 10.1021/acs.inorgchem.7b00323

    32. [32]

      Goswami R, Mandal S C, Pathak B, Neogi S. Guest-induced ultrasensitive detection of multiple toxic organics and Fe3+ ions in a strategically designed and regenerative smart fluorescent metal-organic framework[J]. ACS Appl. Mater. Interfaces, 2019,11:9042-9053. doi: 10.1021/acsami.8b20013

    33. [33]

      Gogoi C, Yousufuddin M, Biswas S. A new 3D luminescent Zn(Ⅱ)-organic framework containing a quinoline-2, 6-dicarboxylate linker for the highly selective sensing of Fe(Ⅲ) ions[J]. Dalton Trans., 2019,48:1766-1773. doi: 10.1039/C8DT04252G

    34. [34]

      Kumar G, Mogha N K, Masram D T. Zr-based metal-organic framework/reduced graphene oxide composites for catalytic synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives[J]. ACS Appl. Nano Mater., 2021,4:2682-2693. doi: 10.1021/acsanm.0c03322

    35. [35]

      Han L J, Kong Y J, Zhang X M, Hou G Z, Chen H C, Zheng H G. Fluorescence recognition of adenosine triphosphate and uric acid by two Eu-based metal-organic frameworks[J]. J. Mater. Chem. C, 2021,9:6051-6061. doi: 10.1039/D1TC01204E

    36. [36]

      Jiao Z H, Jiang X L, Hou S L, Tang M H, Zhao B. Highly sensitive and selective luminescence sensor based on two-fold interpenetrated MOFs for detecting glutamate in serum[J]. Inorg. Chem., 2020,59:2171-2177. doi: 10.1021/acs.inorgchem.9b02752

    37. [37]

      Yang B, Li X S, An J D, Zhang H M, Liu M M, Cheng Y, Ding B, Li Y. Designing an "off-on" fluorescence sensor based on cluster-based Ca-metal-organic frameworks for detection of L-cysteine in biological fluids[J]. Langmuir, 2019,35:9885-9895.

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(1)
  • Abstract views(81)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return