Citation: Tiantian MA, Sumei LI, Chengyu ZHANG, Lu XU, Yiyan BAI, Yunlong FU, Wenjuan JI, Haiying YANG. Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351 shu

Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine

Figures(11)

  • A Cd-based metal-organic framework (MOF) [Cd(BDC)(BPZ)(H2O)]n (1), where BPZ=3,3′,5,5′-tetramethyl-1H,1′H-4,4′-bipyrazole and H2BDC=terephthalic acid, was designed and synthesized. Compound 1 possesses a 3D pore structure with —CH3 groups and free carboxyl oxygen atoms on the pore walls. The presence of methyl groups significantly enhances the hydrophobicity and stability of MOF. Moreover, the methyl group and uncoordinated carboxyl oxygen atoms can interact with dopamine (DA) molecules through hydrogen bonding or van der Waals interactions, endowing in 1 with sensitive electrochemical sensing properties for DA. The differential pulse voltammetry (DPV) test of the prepared 1/GCE electrode showed that it had a wide linear range of 0.4 to 764.7 μmol·L-1 for detecting DA, and the detection limit was as low as 56.8 nmol·L-1. The DPV response current of the electrode remained unchanged in the presence of common interferents. When the electrode was applied for real sample analysis, the recovery rates ranged from 95.23% to 100.90%.
  • 加载中
    1. [1]

      Vaishag P V, Mohandas S A, Mufeeda M, Gangadharan P, Rasheed P A. Conversion of electronic waste to an electrochemical sensor for dopamine: Using MXene-modified liquid crystal display panels[J]. ACS Sustain. Chem. Eng., 2023,11(34):12771-12779. doi: 10.1021/acssuschemeng.3c03173

    2. [2]

      Hardiansyah A, Saputra G M A, Hikmat H, Kusfarida Y E, Septiani N L W, Randy A, Hermawan A, Yuliarto B, Liu T Y, Kida T. Electrochemical evaluation of magnetic reduced graphene oxide nanosheet-modified glassy carbon electrode on dopamine electrochemical sensor for Parkinson's diagnostic application[J]. J. Chin. Chem. Soc., 2023,70(8):1665-1682. doi: 10.1002/jccs.202300197

    3. [3]

      Chellasamy G, Arumugasamy S K, Nam M J, Venkateswarlu S, Varathan E, Sekar K, Manokaran K, Choi M J, Govindaraju S, Yun K. Experimental and simulation studies of bioinspired Au-enhanced copper single atom catalysts towards real-time expeditious dopamine sensing on human neuronal cell[J]. Chem. Eng. J., 2023,471144842. doi: 10.1016/j.cej.2023.144842

    4. [4]

      Balkourani G, Brouzgou A, Tsiakaras P. A review on recent advancements in electrochemical detection of dopamine using carbonaceous nanomaterials[J]. Carbon, 2023,213(25)118281.

    5. [5]

      Al-Salahi N O A, Hashem E Y, Abdel-Kader D A. Spectrophotometric methods for determination of dopamine hydrochloride in bulk and in injectable forms[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,278121278. doi: 10.1016/j.saa.2022.121278

    6. [6]

      Roychoudhury A, Francis K A, Patel J, Jha S K, Basu S. A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin[J]. RSC Adv., 2020,10(43):25487-25495. doi: 10.1039/D0RA03526B

    7. [7]

      Alhusban A A, Hammad A M, Alzaghari L F, Shallan A I, Shnewer K. Rapid and sensitive HPLC-MS/MS method for the quantification of dopamine, GABA, serotonin, glutamine and glutamate in rat brain regions after exposure to tobacco cigarettes[J]. Biomed. Chromatogr., 2022,37(1)e5513.

    8. [8]

      Afsharipour R, Dadfarnia S, Haji Shabani A M. Chemiluminescence determination of dopamine using N, P-graphene quantum dots after preconcentration on magnetic oxidized nanocellulose modified with graphene quantum dots[J]. Microchim. Acta, 2022,189(5)192. doi: 10.1007/s00604-022-05251-3

    9. [9]

      Amara U, Mehran M T, Sarfaraz B, Mahmood K, Hayat A, Nasir M, Riaz S, Nawaz M H. Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection[J]. Microchim. Acta, 2021,188(7)230. doi: 10.1007/s00604-021-04884-0

    10. [10]

      Abu Shama N, Asir S, Ozsoz M, Gokturk I, Turkmen D, Yilmaz F, Denizli A. Gold-modified molecularly imprinted N-methacryloyl-(l)-phenylalanine-containing electrodes for electrochemical detection of dopamine[J]. Bioengineering-Basel, 2022,9(3)87. doi: 10.3390/bioengineering9030087

    11. [11]

      CHAI H M, YAN J L, REN Y X, GAO L J, ZHANG G Q, ZHANG Y, HAO S Y. Heterometallic Ln(Na)-MOFs (Ln=Tb, Dy, Ho): Crystal structures, luminescent sensing for acetaldehyde, Fe3+, Cr2O72-, and electrochemical sensing for catechol[J]. Chinese J. Inorg. Chem., 2021,37(11):1913-1921.  

    12. [12]

      Sofi F A, Bhat M A, Majid K. Cu2+-BTC based metal-organic framework: A redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine[J]. New J. Chem., 2019,43(7):3119-3127. doi: 10.1039/C8NJ06224B

    13. [13]

      Song J J, Zheng J Z, Yang A N, Liu H, Zhao Z Y, Wang N X, Yan F. Metal-organic framework transistors for dopamine sensing[J]. Mater. Chem. Front., 2021,5(8):3422-3427. doi: 10.1039/D1QM00118C

    14. [14]

      Hira S A, Nagappan S, Annas D, Kumar Y A, Park K H. NO2-functionalized metal-organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine[J]. Electrochem. Commun., 2021,125107012. doi: 10.1016/j.elecom.2021.107012

    15. [15]

      Zhou K F, Shen D F, Li X, Chen Y H, Hou L, Zhang Y S, Sha J Q. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine[J]. Talanta, 2020,209120507. doi: 10.1016/j.talanta.2019.120507

    16. [16]

      Tang J, Liu Y, Hu J Q, Zheng S B, Wang X C, Zhou H P, Jin B K. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen[J]. Microchem. J., 2020,155104759. doi: 10.1016/j.microc.2020.104759

    17. [17]

      Chang Y N, Shen C H, Huang C W, Tsai M D, Kung C W. Defective metal-organic framework nanocrystals as signal amplifiers for electrochemical dopamine sensing[J]. ACS Appl. Nano Mater., 2023,6(5):3675-3684. doi: 10.1021/acsanm.2c05402

    18. [18]

      REN S F, LÜ R, WANG Z L, CAO L, GUO T, LIU X H, FENG J. Research progress of MOFs-based electrochemical sensors and their detection application in the field of heavy-metal[J]. Chemical Reagents, 2023,45(10):101-109.  

    19. [19]

      Zorainy M Y, Alalm M G, Kaliaguine S, Boffito D C. Revisiting the MIL-101 metal-organic framework: Design, synthesis, modifications, advances, and recent applications[J]. J. Mater. Chem. A, 2021,9:22159-22217. doi: 10.1039/D1TA06238G

    20. [20]

      Ma J P, Liu X L, Zheng J B, Bai W S. Electrochemical dopamine sensor based on bi-metallic Co/Zn porphyrin metal-organic framework[J]. Microchim. Acta, 2021,189(1)20.

    21. [21]

      Tarasi S, Tehrani A A, Morsali A. The effect of methyl group functionality on the host-guest interaction and sensor behavior in metal-organic frameworks[J]. Sens. Actuator B-Chem., 2020,305127341. doi: 10.1016/j.snb.2019.127341

    22. [22]

      Wang H M, Zhang X L, Wang S J, Ma H Y, Shen Y L, Wang X. A multifunctional electrochemical sensor for the simultaneous detection of ascorbic acid, dopamine, uric acid, and nitrite[J]. J. AOAC Int., 2021,104(3):860-866. doi: 10.1093/jaoacint/qsaa157

    23. [23]

      Azharudeen A M, Roy A, Karthiga R, Prabhu S A, Prakash M G, Badhusha A M I, Ali H, Katubi K M, Islam M R. Ultrasensitive and selective electrochemical detection of dopamine based on CuO/PVA nanocomposite-modified GC electrode[J]. Int. J. Photoenergy, 20228755464.

    24. [24]

      Ding Y, Zhao X, Wu P, Wang R, Xie L, Li Z, Zhu Z, Zhao H, Lan M. ZIF-67 MOF derived Co-based CeO2 electrochemical sensor for dopamine[J]. Electrochim. Acta, 2023,463142802. doi: 10.1016/j.electacta.2023.142802

    25. [25]

      Zhou Z, Mukherjee S, Hou S, Li W, Elsner M, Fischer R A. Porphyrinic MOF film for multifaceted electrochemical sensing[J]. Angew. Chem. Int. Ed., 2021,60(37):20551-20557. doi: 10.1002/anie.202107860

    26. [26]

      Ma Y Y, Wei Z Y, Wang Y, Ding Y H, Jiang L P, Fu X, Zhang Y, Sun J, Zhu W X, Wang J L. Surface oxygen functionalization of carbon cloth toward enhanced electrochemical dopamine sensing[J]. ACS Sustain. Chem. Eng., 2023,9(18):16063-16072.

    27. [27]

      Sipuka D S, Arotiba O A, Sebokolodi T I, Tsekeli T R, Nkosi D. Gold‐dendrimer nanocomposite based electrochemical sensor for dopamine[J]. Electroanalysis, 2023. doi: 10.1002/elan.202200099

    28. [28]

      Radha G, Kumar K S, Chappanda K N, Aggarwal H. Zr-NDI MOF based optical and electrochemical dual sensor for selective detection of dopamine[J]. J. Phys. Chem. C, 2023,127(18):8864-8872. doi: 10.1021/acs.jpcc.3c01377

    29. [29]

      Nisar A, Khan M A, Hussain Z. Synthesis and characterization of PANI/MOF-199/Ag nanocomposite and its potential application as non-enzymatic electrochemical sensing of dopamine[J]. J. Korean Ceram. Soc., 2022,59(3):359-369. doi: 10.1007/s43207-021-00166-w

    30. [30]

      Abdel-Aziz A M, Hassan H H, Badr I H A. Activated glassy carbon electrode as an electrochemical sensing platform for the determination of 4-nitrophenol and dopamine in real samples[J]. ACS Omega, 2022,7(38):34127-34135. doi: 10.1021/acsomega.2c03427

    31. [31]

      ZHANG Z J, ZHANG Y H, YANG S H, MENG W, SANG Z H. Preparation of Fe2O3/CuO/C based on Fe-Cu-MOF and its electrochemical sensing behaviors for dopamine[J]. Chinese Journal of Analysis Laboratory, 2022,41(7):770-775.  

    32. [32]

      Zahed M A, Barman S C, Toyabur R M, Sharifuzzaman M, Xuan X, Nah J, Park J Y. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid[J]. J. Electrochem. Soc., 2019,166(6):B304-B311. doi: 10.1149/2.0131906jes

    33. [33]

      Cheng J, Li Y F, Zhong J, Lu Z W, Wang G T, Sun M M, Jiang Y Y, Zou P, Wang X X, Zhao Q B, Wang Y Y, Rao H B. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone[J]. Chem. Eng. J., 2020,398125664. doi: 10.1016/j.cej.2020.125664

    34. [34]

      Ali M, Sharma S, Singh R, Sharma K, Majhi S, Guin D, Tripathi C S P. Barium titanate nanocubes as a dual electrochemical sensor for detection of dopamine and acetaminophen[J]. J. Electrochem. Soc., 2022,169(6)067512. doi: 10.1149/1945-7111/ac7a67

    35. [35]

      Aparna T K, Sivasubramanian R, Dar M A. One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid[J]. J. Alloy. Compd., 2018,741:1130-1141. doi: 10.1016/j.jallcom.2018.01.205

    36. [36]

      Marsilia M, Susmel S. Free-standing plastic electrodes: Formulation, electrochemical characterization and application to dopamine detection[J]. Sens. Actuator B-Chem., 2018,255:1087-1096. doi: 10.1016/j.snb.2017.08.052

    37. [37]

      Chen X L, Zhang G W, Shi L, Pan S Q, Liu W, Pan H B. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine[J]. Mater. Sci. Eng. C, 2016,65:80-89. doi: 10.1016/j.msec.2016.03.106

    38. [38]

      Zhang Q L, Feng J X, Wang A J, Wei J, Lv Z Y, Feng J J. A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen[J]. Microchim. Acta, 2015,182:589-595. doi: 10.1007/s00604-014-1363-x

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    11. [11]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(0)
  • Abstract views(81)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return