Citation: Xingxing ZHANG, Yunyin NIU. Synthesis of metal coordination compounds containing benzimidazole tripod ligand and their adsorption properties for iodine[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 111-123. doi: 10.11862/CJIC.20230335 shu

Synthesis of metal coordination compounds containing benzimidazole tripod ligand and their adsorption properties for iodine

  • Corresponding author: Yunyin NIU, niuyy@zzu.edu.cn
  • Received Date: 4 September 2023
    Revised Date: 29 November 2023

Figures(11)

  • Two novel metal coordination compounds [Co3(L1)2Cl6]n (1) and {[Cu(L1)(SO4)]·2CH3OH}n (2), where L1= 2, 2′, 2″-tri(1-benzimidazolyl) ethylamine, have been synthesized by solvothermal method. L1 is a neutral benzimidazole tripod ligand. Single crystal X-ray diffraction analysis shows that compound 1 is a 1D chain structure and compound 2 is a 3D structure. The purity of compounds 1 and 2 was characterized by infrared spectroscopy and powder X-ray diffraction. Thermogravimetric analysis shows that compounds 1 and 2 are heat-resistant materials. The iodine adsorption experiments show that they have high performance of capturing iodine in cyclohexane solution and gaseous iodine and have good recycling ability. At the same time, their adsorption kinetics are most suitable for the quasi-second-order model, and the adsorption process is mainly chemisorption. According to the adsorption mechanism, the structures of the compounds contain active groups such as benzene and N heterocyclic ring, which indirectly increases the adsorption site with iodine and the chemical reactivity with iodine, improving the removal rate of iodine.
  • 加载中
    1. [1]

      Yu Y N, Yi Z, Cao L H, Ma Y M. Organic porous solid as promising iodine capture materials[J]. J. Incl. Phenom. Macrocycl. Chem., 2022,102(5/6):395-427.

    2. [2]

      Wang S T, Liu Y J, Zhang C Y, Yang F, Fang W H, Zhang J. Cluster-based crystalline materials for iodine capture[J]. Chem.-Eur. J., 2022,29(2)e202202638.

    3. [3]

      Roh S, Kim D. Effect of Fukushima accident on public acceptance of nuclear energy (Fukushima accident and nuclear public acceptance)[J]. Energ. Source Part B, 2017,12(6):565-569. doi: 10.1080/15567249.2016.1230797

    4. [4]

      Yang Y T, Tu C Z, Yin H J, Liu J J, Cheng F X, Luo F. Molecular iodine capture by covalent organic frameworks[J]. Molecules, 2022,27(24)9045. doi: 10.3390/molecules27249045

    5. [5]

      Reda A T, Zhang D X, Xu X. LiAlO2-melamine for efficient and rapid iodine capture[J]. J. Environ. Chem. Eng., 2022,10(3)107842. doi: 10.1016/j.jece.2022.107842

    6. [6]

      Wang P, Xu Q, Li Z P, Jiang W M, Jiang Q H, Jiang D L. Exceptional iodine capture in 2D covalent organic frameworks[J]. Adv. Mater., 2018,30(29)1801991. doi: 10.1002/adma.201801991

    7. [7]

      Jiang M, Zhu L., Zhao Q, Chen G Y, Wang Z R, Zhang J J, Zhang L, Lei J H, Duan T. Novel synthesis of NaY-NH4F-Bi2S3 composite for enhancing iodine capture[J]. Chem. Eng. J., 2022,443136477. doi: 10.1016/j.cej.2022.136477

    8. [8]

      Pan T T, Yang K J, Dong X L, Han Y. Adsorption-based capture of iodine and organic iodides: Status and challenges[J]. J. Mater. Chem. A, 2023,11(11):5460-5475. doi: 10.1039/D2TA09448G

    9. [9]

      Xiong S H, Tao J, Wang Y Y, Tang J T, Liu C, Liu Q Q, Wang Y, Yu G P, Pan C Y. Uniform poly(phosphazene-triazine) porous microspheres for highly efficient iodine removal[J]. Chem. Commun., 2018,54(61):8450-8453. doi: 10.1039/C8CC04242J

    10. [10]

      Huve J, Ryzhikov A, Nouali H, Lalia V, Augé G, Daou T J. Porous sorbents for the capture of radioactive iodine compounds: A review[J]. RSC Adv., 2018,8(2018)29248.

    11. [11]

      Akram B, Lu Q C, Wang X. Polyoxometalate-zirconia coassembled microdumbbells for efficient capture of iodine[J]. ACS Appl. Energy Mater., 2020,2(5):461-465.

    12. [12]

      Chang J H, Li H, Zhao J, Guan X Y, Li C M, Yu G T, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J]. Chem. Sci., 2021,12(24):8452-8457. doi: 10.1039/D1SC01742J

    13. [13]

      Kluijfhout W P, Pasternak J D, Drake F T, Beninato T, Shen W T, Gosnell J E, Suh I, Liu C, Duh Q Y. Application of the new American Thyroid Association guidelines leads to a substantial rate of completion total thyroidectomy to enable adjuvant radioactive iodine[J]. Surgery, 2017,161(1):127-133. doi: 10.1016/j.surg.2016.05.056

    14. [14]

      Xie Y B, Zhong F Y, Chen H X, Chen D N, Wang J W, Gao J K, Yao J M. Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine[J]. J. Solid State Chem., 2019,277:525-530. doi: 10.1016/j.jssc.2019.07.013

    15. [15]

      Yu Q, Jiang X H, Cheng Z J, Liao Y W, Duan M. Porous ZIF-8@polyacrylonitrile composite beads for iodine capture[J]. RSC Adv., 2021,11(48):3259-3269.

    16. [16]

      Wang K, Geng T M, Zhu F. The architectonics of bitetrazole-based porous organic polymers for capturing iodine and fluorescence sensing to iodine and 4-nitrophenol[J]. Polym. Adv. Technol., 2023,34(5):1529-1539. doi: 10.1002/pat.5986

    17. [17]

      Fujimori K, Kyozuka H, Yasuda S, Goto A, Yasumura S, Ota M, Ohtsuru A, Nomura Y, Hata K, Suzuki K, Nakai A, Sato M, Matsui S, Nakano K, Abe M, Null N. Pregnancy and birth survey after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident in Fukushima prefecture[J]. Fukushima J. Med. Sci., 2014,60(1):75-81. doi: 10.5387/fms.2014-9

    18. [18]

      Kojima Y, Yokoya S, Kurita N, Idaka T, Ishikawa T, Tanaka H, Ezawa Y, Ohto H. Cryptorchidism after the Fukushima Daiichi Nuclear Power Plant accident: Causation or coincidence?[J]. Fukushima J. Med. Sci., 2019,65(3):76-98. doi: 10.5387/fms.2019-22

    19. [19]

      Constantin M, Alemtsehay Tesfay R, Dongxiang Z, Xiyan X, Chang C. An overview on metal Oxide-based materials for iodine capture and storage[J]. Chem. Eng. J., 2021,431(3)133816.

    20. [20]

      Kotcher J, Maibach E, Choi W T. Fossil fuels are harming our brains: Identifying key messages about the health effects of air pollution from fossil fuels[J]. BMC Public Health, 2019,19(1):1079-1079. doi: 10.1186/s12889-019-7373-1

    21. [21]

      Sancho M, Arnal J M, Verdú G. Ultrafiltration and reverse osmosis performance in the treatment of radioimmunoassay liquid wastes[J]. Desalination, 2006,201(1/2/3):207-215.

    22. [22]

      Feng W D, Wang Y H, Li J, Gao K, An H X. Decomposition of spent radioactive ion-exchange resin using photo-Fenton process[J]. J. Chem. Technol. Biotechnol., 2020,95(9):2522-2529. doi: 10.1002/jctb.6437

    23. [23]

      Ye Z X, Chen L F, Liu C C, Ning S Y, Wang X P, Wei Y Z. The rapid removal of iodide from aqueous solutions using a silica-based ion-exchange resin[J]. React. Funct. Polym., 2018,12(2):52-57.

    24. [24]

      Sinha P K, Lal K B, Ahmed J. Removal of radioiodine from liquid effluents[J]. Waste Manage., 1997,17(1):33-37. doi: 10.1016/S0956-053X(97)00034-2

    25. [25]

      Niu T H, Feng C C, Yao C, Yang W Y, Xu Y H. Bisimidazole-based conjugated polymers for excellent iodine capture[J]. ACS Appl. Polym. Mater., 2020,3(1):354-361.

    26. [26]

      Yin C Y, Aroua M K, Daud W M A W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions[J]. Sep. Purif. Technol., 2007,52(3):403-415. doi: 10.1016/j.seppur.2006.06.009

    27. [27]

      Liu S W, Kang S H, Wang H M, Wang G Z, Zhao H J, Cai W P. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances[J]. Chem. Eng. J., 2016,289(1):219-230.

    28. [28]

      Hughes J T, Sava D F, Nenoff T M, Navrotsky A. Thermochemical evidence for strong iodine chemisorption by ZIF-8[J]. J. Am. Chem. Soc., 2013,135(44):16256-16259. doi: 10.1021/ja406081r

    29. [29]

      Ren L Y, Geng T M. The synthesis of s-tetrazine-based porous organic polymer for fluorescence sensing of iodine, picric acid and capturing iodine[J]. J. Porous Mater., 2022,29(5):1565-1573. doi: 10.1007/s10934-022-01279-1

    30. [30]

      Kraithong S, Chailek N, Sirirak J, Suwatpipat K, Wanichacheva N, Swanglap P. Improving sensitivity of a new Hg2+-selective fluorescent sensor by silver nanoparticles via plasmonic enhancement[J]. J. Photochem. Photobiol. A, 2020,407113064.

    31. [31]

      Chirantan K, Gopal D. A retrievable fluorescence "TURN ON" sensor for sulfide anions[J]. J. Photochem. Photobiol. A, 2013,251:128-133.  

    32. [32]

      Chirantan K, Arghya B, Gopal D. Benzimidazole functionalized tripodal receptor for selective recognition of iodide[J]. Tetrahedron Lett., 2012,53(35):4754-4757. doi: 10.1016/j.tetlet.2012.06.120

    33. [33]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    34. [34]

      Bao S H, Wu S S, Huang L P, Xu X, Xu R, Li Y G, Liang Y R, Yang M Y, Yoon D K, Lee M, Huang Z G. Supramolecular nanopumps with chiral recognition for moving organic pollutants from water[J]. ACS Appl. Mater. Interfaces, 2019,11(34):31220-31226.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(2)
  • Abstract views(399)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return