Citation: Liangqing LI, Jiajia LI, Qiting YE, Kaikai WANG, Liangsong LI. Preparation of mordenite zeolite membrane by intermittent hydrothermal synthesis and its application in isopropanol dehydration[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 316-324. doi: 10.11862/CJIC.20230327 shu

Preparation of mordenite zeolite membrane by intermittent hydrothermal synthesis and its application in isopropanol dehydration

  • Corresponding author: Liangqing LI, liliangqing@hsu.edu.cn
  • Received Date: 30 August 2023
    Revised Date: 12 December 2023

Figures(8)

  • A novel intermittent hydrothermal method was applied to synthesize mordenite zeolite membrane. The membrane was synthesized in a template-free synthetic solution using commercially available, economical, macroporous α-Al2O3 tube as the substrate. The out surface of the substrate was coated with a mordenite seed layer via a hotdip coating procedure. The influences of the traditional continuous heating method and the novel intermittent heating method on the morphology, microstructure and pervaporation performance for isopropanol dehydration of the mordenite membranes were compared. The impacts of molar ratios of Na2O/SiO2, SiO2/Al2O3, and NaF/SiO2 in the synthetic solution on the preparation of mordenite zeolite membranes under intermittent hydrothermal synthesis were investigated. The as-synthesized mordenite zeolite membrane showed maximum pervaporation performance for isopropanol dehydration under optimized synthetic solution composition with the molar ratios of Na2O/SiO2, SiO2/Al2O3, and NaF/SiO2 were 0.24, 16.7 and 0.25, respectively. The maximum water permeation flux was 5.60 kg·m-2·h-1 and the separation factor was greater than 10 000, respectively, in the dehydration of isopropanol/water mixture (9∶1, w/w) at 75 ℃.
  • 加载中
    1. [1]

      Lei Z G, Li C Y, Chen B H. Extractive distillation: A review[J]. Sep. Purif. Rev., 2003,32(2):121-213. doi: 10.1081/SPM-120026627

    2. [2]

      Nhien L C, Agarwal N, Lee M. Dehydration of isopropanol: A comparative review of distillation processes, heat integration, and intensification techniques[J]. Energies, 2023,16(16)5934. doi: 10.3390/en16165934

    3. [3]

      Hoof V V, Abeele L V, Buekenhoudt A, Dotremont C. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol[J]. Sep. Purif. Technol., 2004,37(1):33-49. doi: 10.1016/j.seppur.2003.08.003

    4. [4]

      Zhang C, Peng L, Jiang J, Gu X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin. J. Chem. Eng., 2017,25(11):1627-1638. doi: 10.1016/j.cjche.2017.09.014

    5. [5]

      Wee S L, Tye C T, Bhatia S. Membrane separation process—Pervaporation through zeolite membrane[J]. Sep. Purif. Technol., 2008,63(3):500-516. doi: 10.1016/j.seppur.2008.07.010

    6. [6]

      Jyothi M S, Reddy K R, Soontarapa K, Naveen S, Raghu A V, Kulkarni R V, Suhas D P, Shetti N P, Nadagouda M N, Aminabhavi T M. Membranes for dehydration of alcohols via pervaporation[J]. J. Environ. Manage., 2019,242:415-429. doi: 10.1016/j.jenvman.2019.04.043

    7. [7]

      Vane L M. Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation[J]. J. Chem. Technol. Biotechnol., 2019,94(2):343-365. doi: 10.1002/jctb.5839

    8. [8]

      Liu G P, Jin W Q. Pervaporation membrane materials: Recent trends and perspectives[J]. J. Membr. Sci., 2021,636119557. doi: 10.1016/j.memsci.2021.119557

    9. [9]

      Algieri C, Drioli E. Zeolite membranes: Synthesis and applications[J]. Sep. Purif. Technol., 2021,278119295. doi: 10.1016/j.seppur.2021.119295

    10. [10]

      Yue B, Liu S S, Chai Y C, Wu G J, Guan N J, Li L D. Zeolites for separation: fundamental and application[J]. J. Energy Chem., 2022,71:288-303. doi: 10.1016/j.jechem.2022.03.035

    11. [11]

      Luo Y W, Raza W, Yang J H, Li L Q, Lu Y. Recent advances in acid-resistant zeolite T membranes for dehydration of organics[J]. Chin. J. Chem. Eng., 2019,27(6):1449-1457. doi: 10.1016/j.cjche.2019.05.004

    12. [12]

      Li L Q, Li J J, Cheng L J, Wang J X, Yang J H. Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure[J]. J. Membr. Sci., 2020,612118479. doi: 10.1016/j.memsci.2020.118479

    13. [13]

      Raza W, Wang J X, Yang J H, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep. Purif. Technol., 2021,262118338. doi: 10.1016/j.seppur.2021.118338

    14. [14]

      Li L Q, Li J J, Wang X Y, Liu C C, Li L S. Preparation of high-performance zeolite membrane on a macroporous support by novel intermittent hydrothermal synthesis[J]. Microporous Mesoporous Mat., 2023,360112734. doi: 10.1016/j.micromeso.2023.112734

    15. [15]

      Li J J, Li L Q, Yang J H, Lu J M, Wang J Q. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol[J]. Membr. Water Treat., 2019,10:353-360.

    16. [16]

      Yang J H, Li L Q, Li W Z, Wang J Q, Chen Z, Yin D H, Lu J M, Zhang Y, Guo H C. Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid[J]. ChemComm, 2014,50(93):14654-14657.

    17. [17]

      Lu X F, Wang H S, Yang Y W, Wang Z B. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives[J]. J. Membr. Sci., 2022,662120931. doi: 10.1016/j.memsci.2022.120931

    18. [18]

      Wang J X, Wang L, Li L Q, Li J J, Raza W, Lu J M, Yang J H. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures[J]. Sep. Purif. Technol., 2022,286120311. doi: 10.1016/j.seppur.2021.120311

    19. [19]

      Chen C, Cheng Y L, Peng L, Zhang C, Wu Z Q, Gu X H, Wang X Y, Murad S. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation[J]. Microporous Mesoporous Mat., 2019,274:347-355. doi: 10.1016/j.micromeso.2018.09.010

    20. [20]

      Lin X, Kikuchi E, Matsukata M. Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water-isopropyl alcohol mixtures[J]. ChemComm, 2000(11):957-958.

    21. [21]

      Navajas A, Mallada R, Téllez C, Coronas J, Menéndez M, Santamaría J. Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol[J]. J. Membr. Sci., 2007,299(1/2):166-173.

    22. [22]

      Barrer R M. Zeolites and their synthesis[J]. Zeolites, 1981,1(3):130-140. doi: 10.1016/S0144-2449(81)80001-2

    23. [23]

      Occelli M L, Robson H E. Zeolite Synthesis. Washington: ACS Symposium Series, 1989: 11-27

    24. [24]

      Karthika S, Radhakrishnan T, Kalaichelvi P. A review of classical and nonclassical nucleation theories[J]. Cryst. Growth Des., 2016,16(11):6663-6681. doi: 10.1021/acs.cgd.6b00794

    25. [25]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism[J]. Microporous Mesoporous Mat., 2005,82(1/2):1-78.

    26. [26]

      Wong W C, Au L T, Ariso C T, Yeung K L. Effects of synthesis parameters on the zeolite membrane growth[J]. J. Membr. Sci., 2001,191(1/2):143-163.

    27. [27]

      Aguado S, Gascón J, Jansen J C, Kapteijn F. Continuous synthesis of NaA zeolite membranes[J]. Microporous Mesoporous Mat., 2009,120(1/2):170-176.

    28. [28]

      Li L Q, Yang J H, Li J J, Wang J Q, Lu J M, Yin D H, Zhang Y. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE J, 2016,62(8):2813-2824. doi: 10.1002/aic.15234

    29. [29]

      Li L Q, Yang J H, Li J J, Han P, Wang J X, Zhao Y, Wang J Q, Lu J M, Yin D H, Zhang Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating[J]. J. Membr. Sci., 2016,512:83-92. doi: 10.1016/j.memsci.2016.03.056

    30. [30]

      Zhu J, Liu Z D, Endo A, Yanaba Yutaka, Yoshikawa T, Wakihara T, Okubo T. Ultrafast, OSDA-free synthesis of mordenite zeolite[J]. CrystEngComm, 2017,19(4):632-640. doi: 10.1039/C6CE02237E

    31. [31]

      Bronić J, Palčić A, Subotić B, Itani L, Valtchev V. Influence of alkalinity of the starting system on size and morphology of the zeolite A crystals[J]. Mater. Chem. Phys., 2012,132(2/3):973-976.

    32. [32]

      Xie Z K, Chen Q L, Chen B, Zhang C F. Influence of alkalinity on particle size distribution and crystalline structure in synthesis of zeolite beta[J]. Cryst. Eng., 2001,4(4):359-372. doi: 10.1016/S1463-0184(01)00027-2

    33. [33]

      Ren N, Bronić J, Subotić B, Lv X C, Yang Z J, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: Influence of alkalinity on the structural, particulate and chemical properties of the products[J]. Microporous Mesoporous Mat., 2011,139(1/2/3):197-206.

    34. [34]

      Torres J C, Cardoso D. The influence of gel alkalinity in the synthesis and physicochemical properties of the zeolite[Ti, Al]-Beta[J]. Microporous Mesoporous Mat., 2008,113(1/2/3):204-211.

    35. [35]

      Suzuki Y, Wakihara T, Itabashi K, Ogura M, Okubo T. Cooperative effect of sodium and potassium cations on synthesis of ferrierite[J]. Top Catal., 2009,52:67-74. doi: 10.1007/s11244-008-9136-6

    36. [36]

      Zhu M H, Hua X M, Liu Y S, Hu H L, Li Y Q, Hu N, Kumakiri I, Chen X S, Kita H. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Ind. Eng. Chem. Res., 2016,55(47):12268-12275. doi: 10.1021/acs.iecr.6b02125

    37. [37]

      Chen X X, Wang J Q, Yin D H, Yang J H, Lu J M, Zhang Y, Chen Z. High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method[J]. AIChE J., 2013,59(3):936-947. doi: 10.1002/aic.13851

    38. [38]

      Li Y Q, Zhu M H, Hu N, Zhang F, Wu T, Chen X S, Kita H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures[J]. J. Membr. Sci., 2018,564:174-183. doi: 10.1016/j.memsci.2018.07.024

    39. [39]

      Li G, Kikuchi E, Matsukata M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Sep. Purif. Technol., 2003,32(1/2/3):199-206.

    40. [40]

      Zhu M H, Xia S L, Hua X M, Feng Z J, Hu N, Zhang F, Kumakiri I, Lu Z H, Chen X S, Kita H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind. Eng. Chem. Res., 2014,53(49):19168-19174. doi: 10.1021/ie501248y

    41. [41]

      Zhou R F, Hu Z L, Hu N, Duan L Q, Chen X S, Kita H. Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media[J]. Microporous Mesoporous Mat., 2012,156:166-170. doi: 10.1016/j.micromeso.2012.02.023

    42. [42]

      Zhang F, Xu L N, Hu N, Bu N, Zhou R F, Chen X S. Preparation of NaY zeolite membranes in fluoride media and their application in dehydration of bio-alcohols[J]. Sep. Purif. Technol., 2014,129:9-17. doi: 10.1016/j.seppur.2014.03.018

    43. [43]

      Shafiei K, Pakdehi S G, Moghaddam M K, Mohammadi T. Improvement of zeolite T membrane via clear solution gel in dehydration of methanol, ethanol, and 2-propanol[J]. Sep. Sci. Technol., 2014,49(6):797-802. doi: 10.1080/01496395.2013.870576

    44. [44]

      Kondo M, Kita H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents[J]. J. Membr. Sci., 2010,361(1/2):223-231.

    45. [45]

      Wang S, Li L Q, Li J J, Wang J X, Pan E Z, Lu J M, Zhang Y, Yang J H. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion[J]. J. Membr. Sci., 2021,635119431. doi: 10.1016/j.memsci.2021.119431

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(311)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return