Citation: Zhanggui DUAN, Yi PEI, Shanshan ZHENG, Zhaoyang WANG, Yongguang WANG, Junjie WANG, Yang HU, Chunxin LÜ, Wei ZHONG. Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317 shu

Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation

Figures(8)

  • In this study, a composite of Cu-Cu2O/UiO-66-NH2 based on a metal-organic framework (MOF) was successfully prepared by solvothermal method, and it was comprehensively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of solvent, temperature, and catalyst loading on the oxidation of benzyl alcohol to benzaldehyde were investigated using air as an oxidant. The composite catalyst showed excellent catalytic performance, and benzyl alcohol could be quantitatively converted to benzaldehyde at 60 ℃ for 5 h. Additionally, other alcohol substrates such as benzylic alcohols, allylic alcohols, and heteroaryl alcohols, were selectively transformed into the corresponding aldehydes in excellent yields. Notably, the activity of the catalyst was almost unchanged after three cycles of recycling, demonstrating good stability and reusability.
  • 加载中
    1. [1]

      Lou J D, Lu L H, Liu W. Oxidation of alcohols with a new neutral system of potassium dichromate in dimethylformamide[J]. Synth. Commun., 1997,27(21):3701-3703. doi: 10.1080/00397919708007291

    2. [2]

      Firouzabadi H, Fakoorpour M, Hazarkhani H. Highly selective oxidation of primary and secondary benzylic alcohols by KMnO4/ZrOCl2·8H2O in diethyl ether[J]. Synth. Commun., 2001,31(24):3859-3862. doi: 10.1081/SCC-100108237

    3. [3]

      Tohma H, Kita Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis[J]. Adv. Synth. Catal., 2004,346(2/3):111-124.

    4. [4]

      Kogan V, Quintal M M, Neumann R. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by[cis-Ru(Ⅱ)(dmp)2(H2O)2]2+ (dmp=2, 9-dimethylphenanthroline).[J]. Org. Lett., 2005,7(22):5039-5042. doi: 10.1021/ol052025e

    5. [5]

      Chang X X, Wang T, Zhao Z J, Yang P P, Greeley J, Mu R T, Zhang G, Gong Z M, Luo Z B, Chen J, Cui Y, Ozin G A, Gong J L. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions[J]. Angew. Chem. Int. Ed., 2018,57(47):15415-15419. doi: 10.1002/anie.201805256

    6. [6]

      Liu J Y, Peng L W, Zhou Y, Lv L, Fu J, Lin J, Guay D, Qiao J L. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction[J]. ACS Sustain. Chem. Eng., 2019,7(18):15739-15746. doi: 10.1021/acssuschemeng.9b03892

    7. [7]

      Wu S C, Tan C S, Huang M H. Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O-ZnO heterostructures[J]. Adv. Funct. Mater., 2017,27(9)1604635. doi: 10.1002/adfm.201604635

    8. [8]

      Wang X, Liu D P, Li J Q, Zhen J M, Zhang H J. Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface[J]. NPG Asia Mater., 2015,7(1)e158. doi: 10.1038/am.2014.128

    9. [9]

      Zhang J, Ma H P, Liu Z F. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting[J]. Appl. Catal. B-Environ., 2017,201:84-91. doi: 10.1016/j.apcatb.2016.08.025

    10. [10]

      Tan X Y, Yu C, Zhao C T, Huang H W, Yao X C, Han X T, Guo W, Cui S, Huang H L, Qiu J S. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Appl. Mater. Interfaces, 2019,11(10):9904-9910. doi: 10.1021/acsami.8b19111

    11. [11]

      Zhan G W, Fan L L, Zhou S F, Yang X. Fabrication of integrated Cu2O@HKUST-1@Au nanocatalysts via galvanic replacements toward alcohols oxidation application[J]. ACS Appl. Mater. Interfaces, 2018,10(41):35234-35243. doi: 10.1021/acsami.8b12380

    12. [12]

      Zuo S Y, Xu H M, Liao W, Yuan X J, Sun L, Li Q, Zan J, Li D Y, Xia D S. Molten-salt synthesis of g-C3N4-Cu2O heterojunctions with highly enhanced photocatalytic performance[J]. Colloid Surface A-Physicochem. Eng. Asp., 2018,546:307-315. doi: 10.1016/j.colsurfa.2018.03.013

    13. [13]

      Geng W J, Li W X, Liu L, Liu J H, Liu L Y, Kong X J. Facile assembly of Cu-Cu2O/N-reduced graphene oxide nanocomposites for efficient synthesis of 2-methylfuran[J]. Fuel, 2020,259116267. doi: 10.1016/j.fuel.2019.116267

    14. [14]

      Heo J N, Kim J, Do J Y, Park N K, Kang M. Self-assembled electron-rich interface in defected ZnO: rGO-Cu: Cu2O, and effective visible light-induced carbon dioxide photoreduction[J]. Appl. Catal. B-Environ., 2020,266118648. doi: 10.1016/j.apcatb.2020.118648

    15. [15]

      Wang Y D, Stack T D P. Galactose oxidase model complexes: Catalytic reactivities[J]. J. Am. Chem. Soc., 1996,118(51):13097-13098. doi: 10.1021/ja9621354

    16. [16]

      Sokolowski A, Leutbecher H, Weyhermüller T, Schnepf R, Bothe E, Bill E, Hildebrandt P, Wieghardt K. Phenoxyl-copper(Ⅱ) complexes: Models for the active site of galactose oxidase[J]. J. Biol. Inorg. Chem., 1997,2(4):444-453. doi: 10.1007/s007750050155

    17. [17]

      Wang Y D, Dubois J L, Hedman B, Hodgson K O, Stack T D P. Catalytic galactose oxidase models: Biomimetic Cu(Ⅱ)-phenoxyl-radical reactivity[J]. Science, 1998,279(5350):537-540. doi: 10.1126/science.279.5350.537

    18. [18]

      Alamsetti S K, Mannam S, Mutupandi P, Sekar G. Galactose oxidase model: Biomimetic enantiomer-differentiating oxidation of alcohols by a chiral copper complex[J]. Chem.-Eur. J., 2009,15(5):1086-1090. doi: 10.1002/chem.200802064

    19. [19]

      Hoover J M, Stahl S S. Highly practical copper(Ⅰ)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols[J]. J. Am. Chem. Soc., 2011,133(42):16901-16910. doi: 10.1021/ja206230h

    20. [20]

      CHENG P Y, ZHU L H, LÜ C X, LIU J H, ZHONG W, HE Y B. Efficient aerobic oxidation of alcohols over Cu-Cu2O nanoparticles supported on a porous polythiophene polymer[J]. Chinese J. Inorg. Chem., 2023,39(7):1223-1234.  

    21. [21]

      Ma J M, Zhong W, You L L, Pei Y, Lu C X, Xiao Z Y, Shen Z Q, Jiang X J, Qian N L, Liu X M, Zhang S H. Band bending caused by forming heterojunctions in Cu-Cu2O/rGO-NH2 semiconductor materials and surface coordination of N-methylimidazole, and the intrinsic nature of synergistic effect on the catalysis of selective aerobic oxidation of alcohols[J]. Appl. Surf. Sci., 2022,605154563. doi: 10.1016/j.apsusc.2022.154563

    22. [22]

      Yang Y L, Zhong W, Ma R N, Lu C X, Shen Z Q, Liu X M, Zhang S H, Wang H M. Engineering the surface of cuprous oxide via surface coordination for efficient catalysis on aerobic oxidation of benzylic alcohols under ambient conditions[J]. Appl. Surf. Sci., 2021,543148840. doi: 10.1016/j.apsusc.2020.148840

    23. [23]

      Xu B Y, Senthilkumar S, Zhong W, Shen Z Q, Lu C X, Liu X M. Magnetic core-shell Fe3O4@Cu2O and Fe3O4@Cu2O-Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and N-methylimidazole[J]. RSC Adv., 2020,10(44):26142-26150. doi: 10.1039/D0RA04064A

    24. [24]

      Shekhah O, Liu J, Fischer R A, Wöll C. MOF thin films: existing and future applications[J]. Chem. Soc. Rev., 2011,40(2):1081-1106. doi: 10.1039/c0cs00147c

    25. [25]

      Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020,120(2):1438-1511. doi: 10.1021/acs.chemrev.9b00223

    26. [26]

      Wang G, He C T, Huang R, Mao J J, Wang D S, Li Y D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels[J]. J. Am. Chem. Soc., 2020,142(45):19339-19345. doi: 10.1021/jacs.0c09599

    27. [27]

      Feng J, Li M, Zhong Y H, Xu Y L, Meng X J, Zhao Z W, Feng C G. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability[J]. Microporous Mesoporous Mat., 2020,294109858. doi: 10.1016/j.micromeso.2019.109858

    28. [28]

      Wang S Q, Zhang X Y, Dao X Y, Cheng X M, Sun W Y. Cu2O@Cu@UiO-66-NH2 ternary nanocubes for photocatalytic CO2 reduction[J]. ACS Appl. Nano Mater., 2020,3(10):10437-10445. doi: 10.1021/acsanm.0c02312

    29. [29]

      Hao X H, Liang Y Q, Zhen H, Sun X C, Liu X L, Li M W, Shen A, Yang Y X. Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2[J]. J. Solid State Chem., 2020,287121323. doi: 10.1016/j.jssc.2020.121323

    30. [30]

      Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C, Zhao J C. Rapid photocatalytic debromination on TiO2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity[J]. Appl. Catal., B-Environ., 2016,194:150-156. doi: 10.1016/j.apcatb.2016.04.053

    31. [31]

      Huang H J, Zhang J, Jiang L, Zang Z G. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B[J]. J. Alloy Compd., 2017,718:112-115. doi: 10.1016/j.jallcom.2017.05.132

    32. [32]

      Guan Q Q, Wang B, Chai X S, Liu J J, Gu J J, Ning P. Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium[J]. Fuel, 2017,205:130-141. doi: 10.1016/j.fuel.2017.05.029

    33. [33]

      Zhang X R, Zhou H F, Cao W, Chen C, Jiang C Y, Wang Y P. Preparation and mechanism investigation of Bi2WO6/UiO-66-NH2 Z-scheme heterojunction with enhanced visible light catalytic activity[J]. Inorg. Chem. Commun., 2020,120108162. doi: 10.1016/j.inoche.2020.108162

    34. [34]

      Zhao F, Su C H, Yang W X, Han Y, Luo X L, Li C H, Tang W Z, Yue T L, Li Z H. In-situ growth of UiO-66-NH2 onto polyacrylamide-grafted nonwoven fabric for highly efficient Pb(Ⅱ) removal[J]. Appl. Surf. Sci., 2020,527146862. doi: 10.1016/j.apsusc.2020.146862

    35. [35]

      Yu L, Li G J, Zhang X S, Ba X, Shi G D, Li Y, Wong P K, Yu J C, Yu Y. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis[J]. ACS Catal., 2016,6(10):6444-6454. doi: 10.1021/acscatal.6b01455

    36. [36]

      Wei Y R, He W D, Sun P X, Yin J M, Deng X L, Xu X J. Synthesis of hollow Cu/Cu2O/Cu2S nanotubes for enhanced electrocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2019,476:966-971. doi: 10.1016/j.apsusc.2019.01.244

    37. [37]

      Pan Y, Yuan X Z, Jiang L B, Wang H, Yu H B, Zhang J. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chem. Eng. J., 2020,384123310. doi: 10.1016/j.cej.2019.123310

    38. [38]

      Liang Q, Cui S N, Jin J, Liu C H, Xu S, Yao C, Li Z Y. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Appl. Surf. Sci., 2018,456:899-907. doi: 10.1016/j.apsusc.2018.06.173

    39. [39]

      Pan J J, Wang L J, Shi Y X, Li L L, Xu Z, Sun H R, Guo F, Shi W L. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics[J]. Sep. Purif. Technol., 2022,284120270. doi: 10.1016/j.seppur.2021.120270

    40. [40]

      Wang M Q, Peng Z, Luo W W, Zhang Q, Li Z D, Zhu Y, Lin H, Cai L T, Yao X Y, Ouyang C Y, Wang D Y. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide[J]. Adv. Sci., 2020,7(13)2000237. doi: 10.1002/advs.202000237

    41. [41]

      Jia D X, Zheng X Y, Ma J M, Lu C X, You L L, Pei Y, Wang Z Y, Liu X M. Work-function-tuned electronic effect of a solute metal in the particles of copper alloys and the thin layer of surface oxides, and its influence on the catalysis on selective aerobic oxidation of benzylic alcohols[J]. Appl. Surf. Sci., 2023,611155549.

    42. [42]

      Pei Y, Li J, Wang Z Y, Zhong W, Lu C X, Shen Z Q, Qian N L, Liu X M. Boosting the catalytic activity of Cu2O via forming composite with both Cu and metal oxides MO2 (M=Mo and W) by tuning its band structure and Lewis acidity[J]. Appl. Surf. Sci., 2023,639158264.

    43. [43]

      Hoover J M, Ryland B L, Stahl S S. Mechanism of copper(Ⅰ)/TEMPO-catalyzed aerobic alcohol oxidation[J]. J. Am. Chem. Soc., 2013,135(6):2357-2367.

    44. [44]

      Liu Z Z, Shen Z Q, Zhang N, Zhong W, Liu X M. Aerobic oxidation of alcohols catalysed by Cu(Ⅰ)/NMI/TEMPO system and its mechanistic insights[J]. Catal. Lett., 2018,148(9):2709-2718.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return