Citation: Lihua HUANG, Jian HUA. Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315 shu

Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods

  • Corresponding author: Lihua HUANG, 247860084@qq.com
  • Received Date: 19 August 2023
    Revised Date: 5 January 2024

Figures(13)

  • Impregnation and co-precipitation methods were used to synthesize HoCeMn/TiO2 catalysts for the reduction of NOx with NH3. Different kinds of characterization methods were used to explore the structures and performances of the catalysts. The results show that the co-precipitation method enhances the interactivity between the active component and carrier, thereby increasing the content of Ce3+, Mn4+, and adsorption oxygen on the surface of HoCeMnTi-C. As a result, it showed excellent low-temperature redox performance. In addition, HoCeMnTi-C prepared by the co-precipitation method possessed more surface acidic sites and stronger surface acidity. The improvement of surface acidity and redox performance is conducive to the adsorption and activation of ammonia, and thereby significantly improved its activity. The increase of acidic sites also restrained the adsorption of H2O and SO2, and therefore sulfur and water resistance of HoCeMnTi-C were significantly promoted. The reaction of selective catalytic reduction (SCR) on catalysts obeys the Eley-Rideal (E-R) mechanism. SO2 poisoning of catalysts was caused by the formation of sulfates, which cover or damage the active sites of the catalysts.
  • 加载中
    1. [1]

      Liu H H, Gao F Y, Ko S J, Luo N, Tang X L, Duan E H, Yi H H, Zhou Y S. Low-temperature NH3-SCR performance of a novel @Mn composite denitrification catalyst[J]. J. Environ. Sci., 2024,137:271-286. doi: 10.1016/j.jes.2022.12.010

    2. [2]

      Ye L M, Lu P, Chen D S, Chen D Y, Wu H W, Dai W J, Gan Y L, Xiao J Y, Xie Z W, Li Z W, Huang H B. Activity enhancement of acetate precursor prepared on MnOx-CeO2 catalyst for low-temperature NH3-SCR: Effect of gaseous acetone addition[J]. Chin. Chem. Lett., 2021,32:2509-2512. doi: 10.1016/j.cclet.2020.12.040

    3. [3]

      Chen C, Xie H D, He P W, Liu X, Yang C, Wang N, Ge C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Appl. Surf. Sci., 2022,571151285. doi: 10.1016/j.apsusc.2021.151285

    4. [4]

      Zhang X L, Zhang X C, Yang X J, Chen Y Z, Hu X R, Wu X P. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance[J]. Chem. Eng. Sci., 2021,238116588. doi: 10.1016/j.ces.2021.116588

    5. [5]

      Wei L, Cui S P, Guo H X, Ma X Y, Zhang L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR[J]. J. Mol. Catal. A-Chem., 2016,421:102-108. doi: 10.1016/j.molcata.2016.05.013

    6. [6]

      Sun P, Huang S X, Guo R T, Li M Y, Liu S M, Pan W G, Fu Z G, Liu S W, Sun X, Liu J. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study[J]. Appl. Surf. Sci., 2018,447:479-488. doi: 10.1016/j.apsusc.2018.03.245

    7. [7]

      Li W, Zhang C, Li X, Tan P, Zhou A L, Fang Q Y, Chen G. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization[J]. Chin. J. Catal., 2018,39:1653-1663. doi: 10.1016/S1872-2067(18)63099-2

    8. [8]

      Liu L J, Kai Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature[J]. Appl. Catal. A-Gen., 2020,592117413. doi: 10.1016/j.apcata.2020.117413

    9. [9]

      Zhu Y J, Xiao X X, Wang J T, Cheng Ma C, Jia X F, Qiao W M, Ling L C. Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature[J]. Appl. Surf. Sci., 2021,569150989. doi: 10.1016/j.apsusc.2021.150989

    10. [10]

      Li S H, Huang B C, Yu C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catal. Commun., 2017,98:47-51. doi: 10.1016/j.catcom.2017.04.046

    11. [11]

      Wu X M, Yu X L, He X Y, Jing G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J. Phys. Chem. C, 2019,123(17):10981-10990. doi: 10.1021/acs.jpcc.9b01048

    12. [12]

      Meng D M, Zhan W C, Guo Y, Guo Y L, Wang Y S, Wang L, Lu G Z. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature[J]. J. Mol. Catal. A-Chem., 2016,420:272-281. doi: 10.1016/j.molcata.2016.04.028

    13. [13]

      Qiu L, Meng J J, Pang D D, Zhang C L, Ouyang F. Reaction and characterization of Co and Ce doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3[J]. Catal. Lett., 2015,145:1500-1509. doi: 10.1007/s10562-015-1556-x

    14. [14]

      Chuang C, Yan Z D, Zhang C L, Zhang Y S, Jiang M, Ruan L N, Xiao M, Yu Y B, He H. Design of Ca-type todorokite catalysts with highly active for the selective reduction of NOx by NH3 at low temperatures[J]. J. Environ. Sci., 2024,138:697-708. doi: 10.1016/j.jes.2023.04.025

    15. [15]

      Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J. Catal., 2012,288:74-83. doi: 10.1016/j.jcat.2012.01.003

    16. [16]

      Secu M, Cernea M, Secu E C, Vasile B S. Structural characterization and photoluminescence of nanocrystalline Ho-doped BaTiO3 derived from sol-gel method[J]. J. Nanopart. Res., 2011,13:3123-3128. doi: 10.1007/s11051-011-0224-3

    17. [17]

      Hang T J, Zhang Y P, Zhuang K, Lu B, Zhu Y W, Shen K. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx[J]. J. Fuel Chem. Technol., 2018,46(3):319-327. doi: 10.1016/S1872-5813(18)30015-X

    18. [18]

      Zhang Z P, Li R M, Wang M J, Li Y S, Tong Y M, Yang P P, Zhu Y J. Two steps synthesis of CeTiOx oxides nanotube catalyst: Enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx[J]. Appl. Catal. B-Environ., 2021,282119542. doi: 10.1016/j.apcatb.2020.119542

    19. [19]

      Mu W T, Zhu J, Zhang S, Guo Y Y, Su L Q, Li X Y, Li Z. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: Rate and direction of multifunctional electron-transfer-bridge and in-situ DRIFTS analysis[J]. Catal. Sci. Technol., 2016,6(20):7532-7548. doi: 10.1039/C6CY01510G

    20. [20]

      Chen L, Ren S, Liu L, Su B X, Yang J, Chen Z C, Wang M M, Liu Q C. Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports[J]. J. Environ. Chem. Eng., 2022,10107167. doi: 10.1016/j.jece.2022.107167

    21. [21]

      Wang F M, Shen B X, Zhu S W, Wang Z. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 2019,249:54-60. doi: 10.1016/j.fuel.2019.02.113

    22. [22]

      Huang X S, Dong F, Zhang G D, Tang Z C. Design and identify the confinement effect of active site position on catalytic performance for selective catalytic reduction of NO with NH3 at low temperature[J]. J. Catal., 2023,420:134-150. doi: 10.1016/j.jcat.2023.02.020

    23. [23]

      Jiang L J, Liu Q C, Ran G J, Kong M, Ren S, Yang J, Li J L. V2O5-modifified Mn-Ce/AC catalyst with high SO2 tolerance for low temperature NH3-SCR of NO[J]. Chem. Eng. J., 2019,370:810-821. doi: 10.1016/j.cej.2019.03.225

    24. [24]

      Wang Y L, Li X X, Zhan L, Li C, Qiao W M, Ling L C. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Ind. Eng. Chem. Res., 2015,54(8):2274-2278. doi: 10.1021/ie504074h

    25. [25]

      France L J, Yang Q, Li W, Chen Z H, Guang J Y, Guo D W, Wang L F, Li X H. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Appl. Catal. B-Environ., 2017,206:203-215. doi: 10.1016/j.apcatb.2017.01.019

    26. [26]

      Fang X, Liu Y J, Chen L Z, Cheng Y. Influence of surface active groups on SO2 resistance of birnessite for low temperature NH3-SCR[J]. Chem. Eng. J., 2020,399125798. doi: 10.1016/j.cej.2020.125798

    27. [27]

      Fan A D, Jing Y, Guo J X, Shi X K, Yuan S D, Li J J. Investigation of Mn doped perovskite La-Mn oxides for NH3-SCR activity and SO2/H2O resistance[J]. Fuel, 2022,310122237. doi: 10.1016/j.fuel.2021.122237

    28. [28]

      Jiang L J, Liang Y, Liu W Z, Wu H L, Aldahri T, Carrero D S, Liu Q C. Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NOx[J]. J. Environ. Chem. Eng., 2021,9(6)106360. doi: 10.1016/j.jece.2021.106360

    29. [29]

      Fang N J, Guo J X, Shu S, Luo H D, Li J J, Chu Y H. Effect of calcination temperature on low temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst[J]. J. Taiwan Inst. Chem. Eng., 2018,93:277-288. doi: 10.1016/j.jtice.2018.07.027

    30. [30]

      Jia B H, Guo J X, Shu S, Fang N J, Li J J, Chu YH. Effects of different Zr/Ti ratios on NH3-SCR over MnOx/ZryTi1-yO2: Characterization and reaction mechanism[J]. Mol. Catal., 2017,443:25-37. doi: 10.1016/j.mcat.2017.09.019

    31. [31]

      Fan Y X, Zhang J, Yang L X, Lu M X, Ying T T, Deng B H, Dai W L, Luo X B, Zou J P, Luo S L. Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in low-temperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3[J]. Sep. Purif. Technol., 2023,311123272. doi: 10.1016/j.seppur.2023.123272

    32. [32]

      Shi X K, Guo J X, Shen T, Fan A D, Liu Y J, Yuan S D. Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst[J]. J. Taiwan Inst. Chem. Eng., 2021,126:102-111. doi: 10.1016/j.jtice.2021.06.056

    33. [33]

      Guo K, Ji J W, Osuga R, Zhu Y X, Sun J F, Tang C J, Kondo J N, Dong L. Construction of Fe2O3 loaded and mesopore-confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance[J]. Appl. Catal. B-Environ., 2021,287119982. doi: 10.1016/j.apcatb.2021.119982

    34. [34]

      Yang C X, Zhang K X, Zhang Y K, Peng G J, Yang M, Wen J J, Xie Y, Xia F T, Jia L J, Zhang Q L. An environmental and highly active Ce/Fe-Zr-SO42- catalyst for selective catalytic reduction of NO with NH3: The improving effects of CeO2 and SO42-[J]. J. Environ. Chem. Eng., 2021,9106799. doi: 10.1016/j.jece.2021.106799

    35. [35]

      Ma Y P, Li W, Wang H M, Chen J J, Wen J J, Xu S Y, Tian X Y, Gao L Y, Hou Z C, Zhang Q L Yang H. Enhanced performance of iron-cerium NOx reduction catalysts by sulphuric acid treatment: The synergistic effect of surface acidity and redox capacity[J]. Appl. Catal. A-Gen., 2021,621118200. doi: 10.1016/j.apcata.2021.118200

    36. [36]

      Qin B, Guo R T, Wei L G, Yin X F, Yin T Y, Zhou J, Qiu Z Z. A highly effective NbMnCeOx catalyst for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism[J]. J. Environ. Chem. Eng., 2022,10108564. doi: 10.1016/j.jece.2022.108564

    37. [37]

      Zhang Q L, Fan J, Ning P, Song Z X, Liu X, Wang L Y, Wang J, Wang H M, Long K X. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst[J]. Appl. Surf. Sci., 2018,435:1037-1045. doi: 10.1016/j.apsusc.2017.11.180

    38. [38]

      Liu Z M, Zhu J Z, Li J H, Ma L L, Woo S I. Novel Mn-Ce-Ti mixed-oxide catalyst for selective catalytic reduction of NOx with NH3[J]. ACS Appl. Mater. Interfaces, 2014,6:14500-14508. doi: 10.1021/am5038164

    39. [39]

      Qin Q J, Chen K, Xie S Z, Li L L, Ou X M, Wei X L, Luo X T, Dong L H, Li B. Enhanced SO2 and H2O resistance of MnTiSnOy composite oxide for NH3-SCR through Sm modification[J]. Appl. Surf. Sci., 2022,583152478. doi: 10.1016/j.apsusc.2022.152478

    40. [40]

      Cao F, Su S, Xiang J, Wang P Y, Hu S, Sun L S, Zhang A C. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015,139:232-239. doi: 10.1016/j.fuel.2014.08.060

    41. [41]

      Liu L J, Su S, Chen D Z, Shu T, Zheng X T, Yu J Y, Feng Y, Wang Y, Hu S, Xiang J. Highly efficient NH3-SCR of NOx over MnFeW/Ti catalyst at low temperature: SO2 tolerance and reaction mechanism[J]. Fuel, 2022,307121805. doi: 10.1016/j.fuel.2021.121805

    42. [42]

      Wang C Z, Gao F Y, Ko S J, Liu H H, Yi H H, Tang X L. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR[J]. Chem. Eng. J., 2022,434134729. doi: 10.1016/j.cej.2022.134729

    43. [43]

      Liu J, Guo R T, Li M Y, Sun P, Liu S M, Pan W G, Liu S W, Sun X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study[J]. Fuel, 2018,223:385-393. doi: 10.1016/j.fuel.2018.03.062

    44. [44]

      Zhao B H, Ran R, Guo X G, Cao L, Xu T F, Chen Z, Wu X D, Si Z C, Weng D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Appl. Catal. A-Gen., 2017,545:64-71. doi: 10.1016/j.apcata.2017.07.024

    45. [45]

      Zhou J, Guo R T, Zhang X F, Liu Y Z, Duan C P, Wu G L, Pan W G. Cerium oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Energy Fuel, 2021,35:2981-2998. doi: 10.1021/acs.energyfuels.0c04231

    46. [46]

      Liu H Z, Chen Z, Wang H M, You C F. Active centers response to SO2 and H2O poisoning over Fe-W-Ni exchanged zeolite for high-temperature NH3-SCR: Experimental and DFT studies[J]. Appl. Surf. Sci., 2021,570151105. doi: 10.1016/j.apsusc.2021.151105

    47. [47]

      Lai J K, Wachs I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catal., 2018,8:6537-6551. doi: 10.1021/acscatal.8b01357

    48. [48]

      Ma S B, Zhao X Y, Li Y S, Zhang T R, Yuan F L, Niu X Y, Zhu Y J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a=0.01, 0.02, 0.03) catalysts for NH3-SCR of NO[J]. Appl. Catal. B-Environ., 2019,248:226-238. doi: 10.1016/j.apcatb.2019.02.015

    49. [49]

      Ma S B, Tan H S, Li Y S, Wang P Q, Zhao C, Niu X Y, Zhu Y J. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y=0.1, 0.2, 0.3) catalysts[J]. Chemosphere, 2020,243125309. doi: 10.1016/j.chemosphere.2019.125309

  • 加载中
    1. [1]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    5. [5]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    12. [12]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    13. [13]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    14. [14]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    15. [15]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    16. [16]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    17. [17]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    18. [18]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

Metrics
  • PDF Downloads(0)
  • Abstract views(160)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return