Citation: Jie ZHANG, Xin LIU, Zhixin LI, Yuting PEI, Yuqi YANG, Huimin LI, Zhiqiang LIU. Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310 shu

Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection

Figures(9)

  • A unique 3D luminescent metal-organic framework, namely [Cd(L)(H2O)0.5]·DMF·2.5H2O (1), where H2L=3-(tetrazol-5-yl)triazole, has been successfully prepared and characterized. The framework has demonstrated excellent luminescence properties and structural stability in the water system. Notably, the luminescence intensity of 1 was significantly quenched by Cr(Ⅵ) (1 mL of Cr2O72- or 150 μL of CrO42-, 1 mmol·L-1), leading to the formation of an "on-off" luminescence silencing system (Cr2O72-@1), which was capable of accurately detecting Cr(Ⅵ) in the water system. The primary mechanism responsible for luminescence quenching was the Forster resonance energy transfer (FRET) process. Additionally, by removing the involvement of the FRET process, the luminescence intensity of the Cr2O72-@1 system could be restored, allowing for the highly selective and sensitive detection of ascorbic acid (AA) in water systems. Moreover, it has been demonstrated that 1 can successfully detect AA in vitamin C tablets, yielding recovery rates ranging from 98.20% to 103.33% and relative standard deviations (RSDs) ranging from 1.78% to 3.42%. Based on the findings of this experiment, a luminescent "IMPLICATION" molecular logic gate has been constructed utilizing AA and Cr(Ⅵ) as the chemical inputs, respectively.
  • 加载中
    1. [1]

      Yu Z Y, Tang W Y. A pre-oxidized Eu-probe doped into bio-MOF-1 for ascorbic acid emission "off-on" detection in human serum[J]. Talanta, 2024,266125051. doi: 10.1016/j.talanta.2023.125051

    2. [2]

      Fan S S, Zhao M G, Ding L J, Li H, Chen S G. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid[J]. Biosens. Bioelectron., 2017,89:846-852. doi: 10.1016/j.bios.2016.09.108

    3. [3]

      Han Q X, Yang H, Wen S T, Jiang H E, Wang L, Liu W S. Selective and rapid detection of ascorbic acid by a cobalt oxyhydroxide-based two-photon fluorescent nano-platform[J]. Inorg. Chem. Front., 2018,5:773-779. doi: 10.1039/C8QI00003D

    4. [4]

      Matsuoka Y, Yamato M, Yamasaki T, Mito F, Yamada K I. Rapid and convenient detection of ascorbic acid using a fluorescent nitroxide switch[J]. Free Radical Biol. Med., 2012,53:2112-2118. doi: 10.1016/j.freeradbiomed.2012.09.032

    5. [5]

      Kim S J, Cho Y K, Lee C, Kim M H, Lee Y. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers[J]. Biosens. Bioelectron., 2016,77:1144-1152. doi: 10.1016/j.bios.2015.11.012

    6. [6]

      Levavasseur M, Becquart C, Pape E, Pigeyre M, Rousseaux J, Staumont-Sallé D, Delaporte E. Severe scurvy: An underestimated disease[J]. Eur. J. Clin. Nutr., 2015,69:1076-1077. doi: 10.1038/ejcn.2015.99

    7. [7]

      Wang L C, Pan L Y, Han X, Ha M N, Li K R, Yu H, Zhang Q H, Li Y G, Hou C Y, Wang H Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF)[J]. J. Colloid Interface Sci., 2022,616:326-337. doi: 10.1016/j.jcis.2022.02.058

    8. [8]

      Attallah N, Osman-Malik Y, Frinak S, Besarab A. Effect of intravenous ascorbic acid in hemodialysis patients with EPO hyporesponsive anemia and hyperferritinemia[J]. Am. J. Kidney Dis., 2006,47:644-654. doi: 10.1053/j.ajkd.2005.12.025

    9. [9]

      FENG Y L, JIANG W J, ZHANG F X, KUANG D Z. Solvothermal synthesis, structure and fluorescence properties of four organotin complexes based on m-phthaloyl bis(substituted salicylaldehyde acylhydrazone)[J]. Chinese J. Inorg. Chem., 2022,38(6):1171-1179.  

    10. [10]

      WANG J J, WANG L B, YUE E L, LI J F, BAI C, TANG L, WANG X, HOU X Y, ZHANG Y Q. A highly stable Cd(Ⅱ) coordination polymer for detection of roxithromycin and B4O72-[J]. Chinese J. Inorg. Chem., 2022,38(12):2491-2498.  

    11. [11]

      Hernandez-Aldave S, Kaspar R B, Letterio M P, Tarat A, Yan Y, Bertoncello P. Quaternary phosphonium-based (TPQPCl)-ionomer/graphite nanoplatelets composite chemically modified electrodes: A novel platform for sensing applications[J]. J. Mater. Chem., 2018,6:13293-13304.

    12. [12]

      Liu K, Yu P, Lin Y Q, Wang Y X, Ohsaka T, Mao L Q. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury[J]. Anal. Chem., 2013,85:9947-9954. doi: 10.1021/ac402620c

    13. [13]

      Zheng H Q, Liu C Y, Zeng X Y, Chen J, Lü J, Lin R G, Cao R, Lin Z J, Su J W. MOF-808: A metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing[J]. Inorg. Chem., 2018,57:9096-9104. doi: 10.1021/acs.inorgchem.8b01097

    14. [14]

      Ling W, Liew G, Li Y, Hao Y F, Pan H Z, Wang H J, Ning B A, Xu H, Huang X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks[J]. Adv. Mater., 2018,301800917. doi: 10.1002/adma.201800917

    15. [15]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Gas adsorption, magnetic, and fluorescent sensing properties of four coordination polymers based on 1, 3, 5-tris(4-carbonylphenyloxy) benzene and bis(imidazole) linkers[J]. CrystEngComm, 2018,20:7666-7676. doi: 10.1039/C8CE01421C

    16. [16]

      Guo X Z, Li B W, Xiong G Z, Lin B, Gui L C, Zhang X X, Qiu Z H, Krishna R, Wang X F, Yan X, Chen S S. A stable ultramicroporous Cd(Ⅱ)-MOF with accessible oxygen sites for efficient separation of light hydrocarbons with high methane production[J]. Sep. Purif. Technol., 2024,334125987. doi: 10.1016/j.seppur.2023.125987

    17. [17]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. A bifunctional 3D Tb-based metal-organic framework for sensing and removal of antibiotics in aqueous medium[J]. CrystEngComm, 2019,21:7286-7292. doi: 10.1039/C9CE01303B

    18. [18]

      Zhang J, Gao L L, Wang Y, Zhai L J, Niu X Y, Hu T P. A novel 3D Cd-based luminescent coordination polymer for selective sensing of 4-NP and NZF[J]. New J. Chem., 2019,43:16853-16859. doi: 10.1039/C9NJ04250D

    19. [19]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Fluorescence sensing and magnetic properties of three coordination polymers based on 6-(3, 5-dicarboxylphenyl)nicotinic acid and pyridine/imidazole linkers[J]. New J. Chem., 2019,43:9376-9383. doi: 10.1039/C9NJ00682F

    20. [20]

      Zhang J, Gao L L, Zhou W D, Zhai L J, Niu X Y, Hu T P. A stable dual-emitting dye@LMOF luminescence probe for the rapid and visible detection of organophosphorous pesticides in aqueous media[J]. CrystEngComm, 2020,22:1050-1056. doi: 10.1039/C9CE01846H

    21. [21]

      Zhang J, Gao L L, Zhang Z K, Zhou W D, Gao T, Zhai L J, Niu X Y, Hu T P. A highly selective luminescent logic gates probe based on Cd-LMOF for pH detection[J]. Microporous Mesoporous Mat., 2020,305110368. doi: 10.1016/j.micromeso.2020.110368

    22. [22]

      Yuan Y Y, Yang S L, Zhang C X, Wang Q L. A new europium metal-organic framework with both high proton conductivity and highly sensitive detection of ascorbic acid[J]. CrystEngComm, 2018,20:6989-6994. doi: 10.1039/C8CE01506F

    23. [23]

      Das A, Ghosh S, Bourda L, Mostakim S K, Banerjee K, Van Hecke K, Biswas S. A Cd(Ⅱ)-organic framework as a highly sensitive and rapid fluorometric sensor for ascorbic acid in aqueous medium[J]. CrystEngComm, 2022,24:4723-4730. doi: 10.1039/D2CE00654E

    24. [24]

      Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38:1330-1352. doi: 10.1039/b802352m

    25. [25]

      Xiao J N, Liu J J, Liu M Y. Ji G F, Liu Z L[J]. Fabrication of a luminescence-silent system based on a post-synthetic modification Cd-MOFs: A highly selective and sensitive turn-on luminescent probe for ascorbic acid detection. Inorg Chem., 2019,58:6167-6174.

    26. [26]

      Xian J Y, Huang Z Y, Xie X X, Lin C J, Zhang X J, Song H Y. A cationic nanotubular metal-organic framework for the removal of Cr2O72- and iodine[J]. Chin. J. Struct. Chem., 2023,42(4)100005. doi: 10.1016/j.cjsc.2022.100005

    27. [27]

      Ji W J, Wang G J, Wang B Q, Yan B, Liu L L, Xu L, Ma T T, Yao S Q, Fu Y L, Zhang L J, Zhai Q G. A new indium-based MOF as the highly stable luminescent ultra-sensitive antibiotic detector[J]. Chin. J. Struct. Chem., 2023,42(4)100062. doi: 10.1016/j.cjsc.2023.100062

    28. [28]

      Wang C H, Gao J, Cao Y L, Tan H L. Colorimetric logic gate for alkaline phosphatase based on copper (Ⅱ)-based metal-organic frameworks with peroxidase-like activity[J]. Anal. Chim. Acta, 2018,1004:74-81. doi: 10.1016/j.aca.2017.11.078

    29. [29]

      Li W, Qi X, Zhao C Y, Xu X F, Tang A N, Kong D M. A rapid and facile detection for specific small-sized amino acids based on target-triggered destruction of metal organic frameworks[J]. ACS Appl. Mater. Interfaces, 2017,9:236-243. doi: 10.1021/acsami.6b13998

    30. [30]

      Yang N N, Fang J J, Sui Q, Gao E Q. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks[J]. ACS Appl. Mater. Interfaces, 2018,10:2735-2744. doi: 10.1021/acsami.7b17381

    31. [31]

      Liu J J, Ji G F, Xiao J N, Liu Z. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(Ⅲ) and Cr(Ⅵ) ions in aqueous solution with high selectivity and sensitivity[J]. Inorg. Chem., 2017,56:4197-4205. doi: 10.1021/acs.inorgchem.7b00157

    32. [32]

      Ji G F, Liu J J, Gao X C, Sun W, Wang J Z, Zhao S L, Liu Z L. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution[J]. J. Mater. Chem. A, 2017,5:10200-10205. doi: 10.1039/C7TA02439H

    33. [33]

      Zhou X H, Li L, Li H H, Li A, Yang T, Huang W. A flexible Eu(Ⅲ)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid[J]. Dalton Trans., 2013,42:12403-12409. doi: 10.1039/c3dt51081f

    34. [34]

      Li P J, Hong Y Y, Feng H T, Li S F Y. An efficient "off-on" carbon nanoparticle-based fluorescent sensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J]. J. Mater. Chem. B, 2017,5:2979-2988. doi: 10.1039/C7TB00017K

    35. [35]

      Du F F, Gong X J, Lu W J, Liu Y, Gao Y F, Shuang S M, Xian M, Dong C. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging[J]. Talanta, 2018,179:554-562. doi: 10.1016/j.talanta.2017.11.030

    36. [36]

      Xiao J N, Liu J J, Gao X C, Ji G F, Wang D B, Liu Z L. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg(Ⅱ) and highly sensitive sensor of Cr(Ⅵ)[J]. Sens. Actuator B-Chem., 2018,269:164-172. doi: 10.1016/j.snb.2018.04.129

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    4. [4]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    5. [5]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    6. [6]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    18. [18]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    19. [19]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(0)
  • Abstract views(85)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return