Citation: Zongfei YANG, Xiaosen ZHAO, Jing LI, Wenchang ZHUANG. Research advances in heteropolyoxoniobates[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306 shu

Research advances in heteropolyoxoniobates

Figures(9)

  • Polyoxometalates, abbreviated as POMs, are a special kind of versatile nanosized metal-oxygen clusters formed by the assembly of high-valent early transition-metal atoms (typically V5+, Nb5+, Ta5+, Mo6+ and W6+). They have various structures and unique physicochemical properties and are widely used in the fields of catalysis, magnetism, materials science, medicine, and optics. In the past few decades, polyoxoniobates (PONbs), a subfamily of POMs, have drawn considerable attention due to their structural diversity and application prospects in alkaline catalysis and photocatalytic hydrogen production, etc. According to whether they contain heteroatoms or not, PONbs can be classified into two categories, namely, isopolyoxoniobates and heteropolyoxoniobates (HPONbs). In this review, we systematically summarise typical HPONbs with main group elements (ⅢA/ⅣA/ⅤA/ⅥA) or transition metal elements (V/Fe/Cu) as heteroatoms reported in the past several decades, including their assembly methodologies, structure regulation, properties, and related applications. Moreover, the current challenges and prospects of these materials are also discussed. We hope that this review can provide some helpful enlightenment and promising directions for exploring and discovering innovative PONb-based materials with unique functions and practicability.
  • 加载中
    1. [1]

      Ma P T, Hu F, Wang J P, Niu J Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications[J]. Coord. Chem. Rev., 2019,378:281-309. doi: 10.1016/j.ccr.2018.02.010

    2. [2]

      Yang Z F, Li J, Niu J Y, Wang J P. Polyoxotantalate chemistry: From synthetic strategies to structural diversity and applications[J]. Dalton Trans., 2023,52(15):4632-4642. doi: 10.1039/D2DT03319D

    3. [3]

      Li X X, Zhao D, Zheng S T. Recent advances in POM-organic frameworks and POM-organic polyhedra[J]. Coord. Chem. Rev., 2019,397:220-240. doi: 10.1016/j.ccr.2019.07.005

    4. [4]

      Wang Z M, Xin X, Zhang M, Li Z, Lv H J, Yang G Y. Recent advances of mixed-transition-metal-substituted polyoxometalates[J]. Sci. Chi. Chem., 2022,65:1515-1525. doi: 10.1007/s11426-022-1276-4

    5. [5]

      WU L Z, LI Y W, CHANG Y D, YANG N, GE X Y, HUI J F, LIU B, XUE G L. Syntheses, structures, and magnetic properties of sandwich-type tungstobismuthate containing manganese[J]. Chinese J. Inorg. Chem., 2022,38(10):2056-2064.  

    6. [6]

      YANG Z F, MU Q S, WANG Y P, MA P T, WANG J P, NIU J Y. Synthesis, structure and properties of a sandwich-type polyoxomolybdate containing mixed-valence antimony[J]. Chinese J. Inorg. Chem., 2019,35(11):2101-2107.  

    7. [7]

      Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterization and applications in catalysis[J]. Chem. Soc. Rev., 2021,50(10):6152-6220. doi: 10.1039/D0CS00323A

    8. [8]

      Nyman M. Polyoxoniobate chemistry in the 21st century[J]. Dalton Trans., 2011,40(32):8049-8058. doi: 10.1039/c1dt10435g

    9. [9]

      Dong J, Hu J F, Chi Y N, Lin Z G, Zou B, Yang S, Hill C L, Hu C W. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants[J]. Angew. Chem. Int. Ed., 2017,56(16):4473-4477. doi: 10.1002/anie.201700159

    10. [10]

      Liu H F, Liu C P, Zhen N, Dong J, Chi Y N, Hu C W. Amphiphilic polyoxoniobate-based recoverable Pickering emulsion for effective oxidative desulfurization[J]. Appl. Catal. A-Gen., 2023,656119133. doi: 10.1016/j.apcata.2023.119133

    11. [11]

      Huang P, Qin C, Su Z M, Xing Y, Wang X L, Shao K Z, Lan Y Q, Wang E B. Self-assembly and photocatalytic properties of polyoxoniobates: {Nb24O72}, {Nb32O96}, and {K12Nb96O288} clusters[J]. J. Am. Chem. Soc., 2012,134(34):14004-14010. doi: 10.1021/ja303723u

    12. [12]

      Zhen N, Dong J, Lin Z G, Lu W, Li J, Chi Y N, Hu C W. A rhombus-like tetrameric vanadoniobate containing pseudo-sandwich-type {Li⊂V2O8(Nb5O14)2} and its electrocatalytic activity for the selective oxidation of benzyl alcohol[J]. Inorg. Chem., 2023,62(34):13824-13831. doi: 10.1021/acs.inorgchem.3c01575

    13. [13]

      Li D H, Shi N, Wang Y J, Cai P W, Sun Y Q, Zheng S T. An organic-inorganic hybrid polyoxoniobate decorated by a Co(Ⅲ)-amine complex for electrocatalytic urea splitting[J]. Inorg. Chem. Front., 2023,10(16):4789-4796. doi: 10.1039/D3QI01066J

    14. [14]

      Zhang T T, Cui X B. The syntheses of a series of polyoxoniobate-based compounds: Their characterizations and catalytic applications in styrene epoxidation[J]. Polyhedron, 2023,243116532. doi: 10.1016/j.poly.2023.116532

    15. [15]

      Guo Z W, Lin L H, Ye J P, Chen Y, Li X X, Lin S, Huang J D, Zheng S T. Core-shell-type all-inorganic heterometallic nanoclusters: Record high-nuclearity cobalt polyoxoniobates for visible-light-driven photocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2023,62e202305260. doi: 10.1002/anie.202305260

    16. [16]

      Lindqvist I. The structure of the hexaniobate ion in 7Na2O·6Nb2O5·32H2O[J]. Arkiv for Kemi, 1953,5(3):247-250.

    17. [17]

      Nyman M, Alam T M, Bonhomme F, Rodriguez M A, Frazer C S, Welk M E. Solid-state structures and solution behavior of alkali salts of the[Nb6O19]8--Lindqvist ion[J]. J. Clust. Sci., 2006,17(2):197-219. doi: 10.1007/s10876-006-0049-x

    18. [18]

      Graeber E J, Morosin B. The molecular configuration of the decaniobate ion (Nb10O28)6-[J]. Acta Crystallogr. Sect. B, 1977,B33:2137-2143.

    19. [19]

      Maekawa M, Ozawa Y, Yagasaki A. Icosaniobate: A new member of the isoniobate family[J]. Inorg. Chem., 2006,45(24):9608-9609. doi: 10.1021/ic0601788

    20. [20]

      Jin L, Zhu Z K, Wu Y L, Qi Y J, Li X X, Zheng S T. Record high-nuclearity polyoxoniobates: Discrete nanoclusters {Nb114}, {Nb81}, and {Nb52}, and extended frameworks based on {Cu3Nb78} and {Cu4Nb78}[J]. Angew. Chem. Int. Ed., 2017,56(51):16288-16292. doi: 10.1002/anie.201709565

    21. [21]

      Wu Y L, Li X L, Qi Y J, Yu H, Jin L, Zheng S T. {Nb288O768(OH)48(CO3)12}: A macromolecular polyoxometalate with niobium atoms close to 300[J]. Angew. Chem. Int. Ed., 2018,57(28):8572-8576. doi: 10.1002/anie.201804088

    22. [22]

      Nyman M, Bonhomme F, Alam T M, Rodriguez M A, Cherry B R, Krumhansl J L, Nenoff T M, Sattler A M. A general synthetic procedure for heteropolyniobates[J]. Science, 2002,297(5583):996-998. doi: 10.1126/science.1073979

    23. [23]

      Hou Y, Nyman M, Rodriguez M A. Soluble heteropolyniobates from the bottom of group ⅠA[J]. Angew. Chem. Int. Ed., 2011,50(52):12514-12517. doi: 10.1002/anie.201104478

    24. [24]

      Dopta J, Mahnke L K, Bensch W. New pronounced progress in the synthesis of group 5 polyoxometalates[J]. CrystEngComm, 2020,22(19):3254-3268. doi: 10.1039/D0CE00315H

    25. [25]

      Abramov P, Sokolov M, Vicent C. Polyoxoniobates and polyoxotantalates as ligands-revisited[J]. Inorganics., 2015,3(2):160-177. doi: 10.3390/inorganics3020160

    26. [26]

      Wu H L, Zhang Z M, Li Y G, Wang X L, Wang E B. Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters[J]. CrystEngComm, 2015,17(33):6261-6268. doi: 10.1039/C5CE00909J

    27. [27]

      Zhao H Y, Li Y Z, Zhao J W, Wang L, Yang G Y. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials[J]. Coord. Chem. Rev., 2021,443213966. doi: 10.1016/j.ccr.2021.213966

    28. [28]

      Stewart T A, Trudell D E, Alam T M, Ohlin C A, Lawler C, Casey W H, Jett S, Nyman M. Enhanced water purification: A single atom makes a difference[J]. Environ. Sci. Technol., 2009,43(14):5416-5422. doi: 10.1021/es803683t

    29. [29]

      Hou Y, Alam T M, Rodriguez M A, Nyman M. Aqueous compatibility of group ⅢA monomers and Nb-polyoxoanions[J]. Chem.Commun., 2012,48(48):6004-6006. doi: 10.1039/c2cc31284k

    30. [30]

      Keggin J F. Structure of the molecule of 12-phosphotungstic acid[J]. Nature, 1933,131:908-909.

    31. [31]

      Li D D, Ma P T, Niu J Y, Wang J P. Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers[J]. Coord. Chem. Rev., 2019,392:49-80. doi: 10.1016/j.ccr.2019.04.008

    32. [32]

      Liu J X, Zhang X B, Li Y L, Huang S L, Yang G Y. Polyoxometalate functionalized architectures[J]. Coord. Chem. Rev., 2020,414213260. doi: 10.1016/j.ccr.2020.213260

    33. [33]

      Nyman M, Bonhomme F, Alam T M, Parise J B, Vaughan G M B. [SiNb12O40]16- and[GeNb12O40]16-: Highly charged Keggin ions with sticky surfaces[J]. Angew. Chem. Int. Ed., 2004,43(21):2787-2792. doi: 10.1002/anie.200353410

    34. [34]

      Bonhomme F, Larentzos J P, Alam T M, Maginn E J, Nyman M. Synthesis, structural characterization, and molecular modeling of dodecaniobate Keggin chain materials[J]. Inorg. Chem., 2005,44:1774-1785. doi: 10.1021/ic048847+

    35. [35]

      Zhang Z Y, Lin Q P, Kurunthu D, Wu T, Zuo F, Zheng S T, Bardeen C J, Bu X H, Feng P Y. Synthesis and photocatalytic properties of a new heteropolyoxoniobate compound: K10[Nb2O2(H2O)2][SiNb12O40]·12H2O[J]. J. Am. Chem. Soc., 2011,133(18):6934-6937. doi: 10.1021/ja201670x

    36. [36]

      Hou Y, Zakharov L N, Nyman M. Observing assembly of complex inorganic materials from polyoxometalate building blocks[J]. J. Am. Chem. Soc., 2013,135(44):16651-16657. doi: 10.1021/ja4086484

    37. [37]

      Zhang Y, Shen J Q, Zheng L H, Zhang Z M, Li Y X, Wang E B. Four polyoxonibate-based inorganic-organic hybrids assembly from bicapped heteropolyoxonibate with effective antitumor activity[J]. Cryst. Growth Des., 2014,14(1):110-116. doi: 10.1021/cg401227g

    38. [38]

      Zhang Z Y, Peng J, Shi Z Y, Zhou W L, Khan S U, Liu H S. Antimony-dependent expansion for the Keggin heteropolyniobate family[J]. Chem. Commun., 2015,51(15):3091-3093. doi: 10.1039/C4CC09612F

    39. [39]

      Shen J Q, Yao S, Zhang Z M, Wu H H, Zhang T Z, Wang E B. Self-assembly and photocatalytic property of germanoniobate[H6Ge4Nb16O56]10-: Encapsulating four {GeO4} tetrahedra within a {Nb16} cage[J]. Dalton Trans., 2013,42(16):5812-5817. doi: 10.1039/c3dt32855d

    40. [40]

      Zhang X, Liu S X, Li S J, Gao Y H, Wang X N, Tang Q, Liu Y W. Two members of the {X4Nb16O56} family (X=Ge, Si) based on[(GeOH)2 Ge2Nb16H2O54]12- and[K(GeOH)2Ge2Nb16H3O54]10-[J]. Eur. J. Inorg. Chem., 2013(10/11):1706-1712.

    41. [41]

      Huang P, Qin C, Wang X L, Sun C Y, Xing Y, Wang H N, Shao K Z, Su Z M. A new organic-inorganic hybrid based on the crescent-shaped polyoxoanion[H6SiNb18O54]8- and copper-organic cations[J]. Dalton Trans., 2012,41:6075-6077. doi: 10.1039/c2dt30265a

    42. [42]

      Zhong Z H, Jing J X, Sun Y Q, Li X X, Zheng S T. Two new 3D tubular polyoxoniobates frameworks based on {SiNb18O54} clusters with proton conduction properties[J]. Inorg. Chem. Commun., 2021,132108813. doi: 10.1016/j.inoche.2021.108813

    43. [43]

      Shi N, Wang Y J, Li X X, Sun Y Q, Zheng S T. An inorganic Co-containing heteropolyoxoniobate: Reversible chemochromism and H2O-dependent proton conductivity properties[J]. Inorg. Chem. Front., 2021,8(24):5225-5233. doi: 10.1039/D1QI01065D

    44. [44]

      Zhu Z K, Lin Y Y, Lai R D, Li X X, Sun Y Q, Zheng S T. A series of high-nuclear planar equilateral triangle-shaped {Ln6(μ3-OH)6} cluster encapsulated polyoxoniobates with frequency dependent magnetic property[J]. Chin. Chem. Lett., 2023,34(7)107773. doi: 10.1016/j.cclet.2022.107773

    45. [45]

      Liu Z Y, Ye J P, Li Y L, Sun Y Q, Li X X, Sun C, Zheng S T. Cadmium-containing windmill-like heteropolyoxoniobate macrocycle with high yield for catalyzing Knoevenagel condensation[J]. Dalton Trans., 2023,52(5):1193-1197. doi: 10.1039/D2DT03706H

    46. [46]

      Nyman M, Celestian A J, Parise J B, Holland G P, Alam T M. Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates[J]. Inorg. Chem., 2006,45(3):1043-1052. doi: 10.1021/ic051155g

    47. [47]

      Liang Z J, Yu J, Zhang Y, Ma P T, Mao Q H, Wang J P. A lacunary heteropolyniobate linked by[Co(H2O)6]2+ ions[J]. Inorg. Chem. Commun., 2020,111107612. doi: 10.1016/j.inoche.2019.107612

    48. [48]

      Son J H, Ohlin C A, Johnson R L, Yu P, Casey W H. A soluble phosphorus-centered Keggin polyoxoniobate with bicapping vanadyl groups[J]. Chem.-Eur. J., 2013,19(16):5191-5197. doi: 10.1002/chem.201204563

    49. [49]

      Shen J Q, Zhang Y, Zhang Z M, Li Y G, Gao Y Q, Wang E B. Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity[J]. Chem. Commun., 2014,50(45):6017-6019. doi: 10.1039/c3cc49245a

    50. [50]

      Shen J Q, Wu Q, Zhang Y, Zhang Z M, Li Y G, Lu Y, Wang E B. Unprecedented high-nuclear transition-metal-cluster-substituted heteropolyoxoniobates: Synthesis by {V8} ring insertion into the POM matrix and antitumor activities[J]. Chem.-Eur. J., 2014,20(10):2840-2848. doi: 10.1002/chem.201303995

    51. [51]

      Lan Q, Zhang Z M, Li Y G, Wang E B. Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity[J]. RSC Adv., 2015,5(55):44198-44203. doi: 10.1039/C5RA08262E

    52. [52]

      Hu J F, Wang Y, Zhang X N, Chi Y N, Yang S, Li J K, Hu C W. Controllable assembly of vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds and their photocatalytic properties[J]. Inorg. Chem., 2016,55(15):7501-7507. doi: 10.1021/acs.inorgchem.6b00823

    53. [53]

      Li N, Liu Y W, Lu Y, He D F, Liu S M, Wang X Q, Li Y G, Liu S X. An arsenicniobate-based 3D framework with selective adsorption and anion-exchange properties[J]. New J. Chem., 2016,40(3):2220-2224. doi: 10.1039/C5NJ02163D

    54. [54]

      Son J H, Casey W H. Reversible capping/uncapping of phosphorous-centered Keggin-type polyoxoniobate clusters[J]. Chem. Commun., 2015,51(8):1436-1438. doi: 10.1039/C4CC05689B

    55. [55]

      Son J H, Casey W H. A new Keggin-like niobium-phosphate cluster that reacts reversibly with hydrogen peroxide[J]. Chem. Commun., 2015,51(64):12744-12747. doi: 10.1039/C5CC03782D

    56. [56]

      Yang Z F, Shang J J, He Y Z, Qiao Y Y, Ma P T, Niu J Y, Wang J P. A 1D helical chain heterpolyniobate templated by AsO33-[J]. Inorg. Chem., 2020,59(3):1967-1972. doi: 10.1021/acs.inorgchem.9b03313

    57. [57]

      Wu Y L, Zhong Z H, Wu P X, Sun Y Q, Li X X, Zheng S T. A peanut-like Sb-embedded polyoxoniobate cage for hydrolytic decomposition for chemical warfare agent[J]. Eur. J. Inorg. Chem., 2021(15):1501-1509.

    58. [58]

      Geng Q H, Liu Q S, Ma P T, Wang J P, Niu J Y. Synthesis, crystal structure and photocatalytic properties of an unprecedented arsenic-disubstituted Lindqvist-type peroxopolyoxoniobate ion: {As2Nb4(O2)4 O14H1.5}4.5-[J]. Dalton Trans., 2014,43(26):9843-9846. doi: 10.1039/C4DT00875H

    59. [59]

      Son J H, Park D H, Keszler D A, Casey W H. Acid-stable peroxoniobophosphate clusters to make patterned films[J]. Chem.-Eur. J., 2015,21(18):6727-6731. doi: 10.1002/chem.201500684

    60. [60]

      Zhao S F, Liang Z J, Geng Q H, Ma P T, Zhang C, Niu J Y, Wang J P. Assembly of niobium-phosphate cluster and in situ transition-metal-containing derivatives[J]. CrystEngComm, 2017,19(20):2768-2774. doi: 10.1039/C7CE00603A

    61. [61]

      Wang H Y, Li J, Sun J J, Wang Y Y, Liang Z J, Ma P T, Zhang D D, Wang J P, Niu J Y. Synthesis, structure, and luminescent properties of a family of lanthanide-functionalized peroxoniobiophosphates[J]. Sci. Rep., 2017,7(1)10653. doi: 10.1038/s41598-017-10811-2

    62. [62]

      Yang Z F, Mu Q S, Liang Z J, Ma P T, Niu J Y, Wang J P. A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P2Se2Nb6(O2)6O22]8-[J]. Dalton Trans., 2019,48(35):13135-13138. doi: 10.1039/C9DT02860A

    63. [63]

      Yang Z F, Yan B, Li X, Wu J K, Ma P T, Niu J Y, Wang J P. Three types of lanthanide-containing polyoxoniobates and their luminescence properties[J]. Inorg. Chem., 2022,61(31):12181-12189. doi: 10.1021/acs.inorgchem.2c01203

    64. [64]

      Hu J F, Han T, Chi Y N, Lin Z G, Xu Y Q, Yang S, Wei D, Zheng Y Z, Hu C W. Sulfur-centred polyoxoniobate-based 3D organic-inorganic hybrid compound and its magnetic behavior[J]. Chem. Commun., 2016,52(72):10846-10849. doi: 10.1039/C6CC03915D

    65. [65]

      Son J H, Wang J R, Osterloh F E, Yu P, Casey W H. A tellurium-substituted Lindqvist-type polyoxoniobate showing high H2 evolution catalyzed by tellurium nanowires via photodecomposition[J]. Chem. Commun., 2014,50(7):836-838. doi: 10.1039/C3CC47001F

    66. [66]

      Abramov P A, Zemerova T P, Moroz N K, Kompankov N B, Zhdanov A A, Tsygankova A R, Vicent C, Sokolov M N. Synthesis and characterization of[(OH)TeNb5O18]6- in water solution, comparison with[Nb6O19]8-[J]. Inorg. Chem., 2016,55(4):1381-1389. doi: 10.1021/acs.inorgchem.5b01806

    67. [67]

      Liang Z J, Sun J J, Zhang D D, Ma P T, Zhang C, Niu J Y, Wang J P. Assembly of TeO32- ions embedded in an Nb/O cage with selective decolorization of organic dye[J]. Inorg. Chem., 2017,56(17):10119-10122. doi: 10.1021/acs.inorgchem.7b00860

    68. [68]

      Liang Z J, Zhang L, Li Y Y, Ma P T, Niu J Y, Wang J P. Two novel heteropolyniobates using TeO32- as template and linker[J]. Inorg. Chem., 2019,58(1):27-30. doi: 10.1021/acs.inorgchem.8b02528

    69. [69]

      Liang Z J, He Y Z, Qiao Y Y, Ma P T, Niu J Y, Wang J P. Sandwich-type heteropolyniobate templated by mixed heteroanions[J]. Inorg. Chem., 2020,59(12):7895-7899. doi: 10.1021/acs.inorgchem.0c00312

    70. [70]

      Yang Z F, Shang J J, Yang Y Y, Ma P T, Niu J Y, Wang J P. Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on[TeNb9O33]17- units[J]. Dalton Trans., 2021,50(22):7610-7620. doi: 10.1039/D1DT00223F

    71. [71]

      Cheng M Y, Liu Y F, Li N, Shi J W, Du W X, Zhang D D, Yang G P, Wang G, Niu J Y. Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction[J]. Chem. Commun., 2022,58(8):1167-1170. doi: 10.1039/D1CC06781H

    72. [72]

      Jing Z, Wang W Y, Wan R, Ma X Y, Qiao Y Y, Bai Y F, Ma P T, Niu J Y, Wang J P. Rocket-shaped telluroniobate with efficient catalytic activity in the transesterification reaction[J]. Inorg. Chem., 2022,61(42):16528-1653. doi: 10.1021/acs.inorgchem.2c02665

    73. [73]

      Lai R D, Feng H L, Sun Y Q, Li X X, Zheng S T. A lanthanide-tellurium heterometal encapsulated sandwich-type heteropolyoxoniobate with a 3D pcu-type hydrogen-bonded network[J]. Dalton Trans., 2022,51(27):10571-10577. doi: 10.1039/D2DT01472F

    74. [74]

      Zhen N, Dong J, Lin Z G, Li Z, Liu C P, Li X X, Geng W J, Chi Y N, Hu C W. {V6} ring sandwiched polyoxoniobate as molecular electrocatalyst for oxidant-free synthesis of sulfoxides[J]. Chem.-Eur. J., 2023,29(23)e202203903. doi: 10.1002/chem.202203903

    75. [75]

      Guo G L, Xu Y Q, Cao J, Hu C W. An unprecedented vanadoniobate cluster with 'trans-vanadium' bicapped Keggin-type {VNb12O40 (VO)2}[J]. Chem. Commun., 2011,47(33):9411-9413. doi: 10.1039/c1cc12329g

    76. [76]

      Son J H, Ohlin C A, Larson E C, Yu D, Casey W H. Synthesis and characterization of a soluble vanadium-containing Keggin polyoxoniobate by ESI-MS and 51V NMR: (TMA)9[V3Nb12O42]·18H2O[J]. Eur. J. Inorg. Chem., 2013(10/11):1748-1753.

    77. [77]

      Huang P, Zhou E L, Wang X L, Sun C Y, Wang H N, Xing Y, Shao K Z, Su Z M. New heteropolyniobates based on a bicapped Keggin-type {VNb14} cluster with selective adsorption and photocatalytic properties[J]. CrystEngComm, 2014,16(41):9582-9585. doi: 10.1039/C4CE00960F

    78. [78]

      Huang P, Qin C, Wang X L, Sun C Y, Yang G S, Shao K Z, Jiao Y Q, Zhou K, Su Z M. An unprecedented organic-inorganic hybrid based on the first {Nb10V4O40(OH)2}12- clusters and copper cations[J]. Chem. Commun., 2012,48(1):103-105. doi: 10.1039/C1CC15684E

    79. [79]

      Guo G L, Xu Y Q, Cao J, Hu C W. The {V4Nb6O30} cluster: A new type of vanadoniobate anion structure[J]. Chem.-Eur. J., 2012,18(12):3493-3497. doi: 10.1002/chem.201103390

    80. [80]

      Abramov P A, Davletgildeeva A T, Moroz N K, Kompankov N B, Santiago-Schübel B, Sokolov M N. Cation-dependent self-assembly of vanadium polyoxoniobates[J]. Inorg. Chem., 2016,55(24):12807-12814. doi: 10.1021/acs.inorgchem.6b02108

    81. [81]

      Zhen N, Dong J, Lin Z G, Li X X, Chi Y N, Hu C W. Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants[J]. Chem. Commun., 2020,56(90):13967-13970. doi: 10.1039/D0CC06277D

    82. [82]

      Liang Z J, Wang K, Zhang D D, Ma P T, Niu J Y, Wang J P. {Fe3Nb25} cluster based on an Fe-centred Keggin unit[J]. Dalton Trans., 2017,46(5):1368-1371. doi: 10.1039/C6DT04223F

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return