Citation: Ruikui YAN, Xiaoli CHEN, Miao CAI, Jing REN, Huali CUI, Hua YANG, Jijiang WANG. Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301 shu

Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks

  • Corresponding author: Xiaoli CHEN, chenxiaoli003@163.com
  • Received Date: 7 August 2023
    Revised Date: 13 December 2023

Figures(9)

  • Based on the 5-(3, 4-dicarboxyphenoxy) isophthalic acid (H4dppa) ligand, two lanthanide metal-organic frameworks (Ln-MOFs) were designed and synthesized by hydrothermal synthesis: {(dima)[Dy(dppa)(H2O)2]·2.5H2O}n (Dy - MOF) and {(dima) [Eu(dppa) (H2O)2]·1.5H2O}n (Eu - MOF) (dima=dimethylamine cation). The structures were characterized by elemental analysis, infrared spectroscopy, single-crystal X-ray diffraction, etc. Dy-MOF and Eu- MOF are hetero-isomorphic 2D network structures, and adjacent 2D networks further form 3D supramolecular network structures through hydrogen bonding. Fluorescence analysis shows that Dy-MOF and Eu-MOF have excellent fluorescence properties at room temperature, and Dy-MOF has excellent fluorescence sensing properties, which can efficiently and high-sensitively detect a variety of pollutants in water: aniline (ANI), nitrobenzene (NB), tetracycline (TC), pyrimethanil (PTH), and tryptophan (Trp). The fluorescence quenching mechanism of Dy-MOF in detecting pollutants was also investigated.
  • 加载中
    1. [1]

      Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Luminescent sensors based on metal-organic frameworks[J]. Coord. Chem. Rev., 2018,354:28-45. doi: 10.1016/j.ccr.2017.06.007

    2. [2]

      Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T. Hybridization of MOFs and polymers[J]. Chem. Soc. Rev., 2017,46(11):3108-3133. doi: 10.1039/C7CS00041C

    3. [3]

      Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S, Sun C H, Bu X H. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017,56:13001-13005. doi: 10.1002/anie.201707238

    4. [4]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,301705189. doi: 10.1002/adma.201705189

    5. [5]

      Bai W B, Qin G X, Wang J, Li L, Ni Y H. 2-Aminoterephthalic acid co-coordinated Co MOF fluorescent probe for highly selective detection of the organophosphorus pesticides with p-nitrophenyl group in water systems[J]. Dyes Pigment., 2021,193109473. doi: 10.1016/j.dyepig.2021.109473

    6. [6]

      Chen W T, Li L Y, Li X X, Lin L D, Wang G Q, Zhang Z, Li L Y, Yu Y. Layered rare earth organic framework as highly efficient luminescent matrix: The crystal structure, optical spectroscopy, electronic transition, and luminescent sensing properties[J]. Cryst. Growth Des., 2019,19(8):4754-4764. doi: 10.1021/acs.cgd.9b00635

    7. [7]

      Cui Z, Zhang X Y, Liu S, Zhou L, Li W L, Zhang J P. Anionic lanthanide metal-organic frameworks: Selective separation of cationic dyes, solvatochromic behavior, and luminescent sensing of Co(Ⅱ) ion[J]. Inorg. Chem., 2018,57(18):11463-11473. doi: 10.1021/acs.inorgchem.8b01319

    8. [8]

      Yan L L, Duan T T, Huang T T, Zhao B B, Fan Y. Phosphotungstic acid immobilized on mixed-ligand-directed UiO-66 for the esterification of 1-butene with acetic acid to produce high-octane gasoline[J]. Fuel, 2019,245:226-232. doi: 10.1016/j.fuel.2019.02.087

    9. [9]

      Helal A, Usman M, Arafat M E, Abdelnaby M M. Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition[J]. J. Ind. Eng. Chem., 2020,89:104-110. doi: 10.1016/j.jiec.2020.05.016

    10. [10]

      Helal A, Cordova K E, Arafat M E, Usman M, Yamani Z H. Defect-engineering a metal-organic framework for CO2 fixation in the synthesis of bioactive oxazolidinones[J]. Inorg. Chem. Front., 2020,7(19):3571-3577. doi: 10.1039/D0QI00496K

    11. [11]

      Sun X, Wang Y, Lei Y. Fluorescence based explosive detection: From mechanisms to sensory materials[J]. Chem. Soc. Rev., 2015,44:8019-8061. doi: 10.1039/C5CS00496A

    12. [12]

      Wang B, Lv X L, Feng D, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016,138(19):6204-6216. doi: 10.1021/jacs.6b01663

    13. [13]

      LIU L, ZHANG T L, YANG L, WU B D, LIU R. QuEChERS-Ultra performance liquid chromatography-tandem mass spectrometry for determination of 2, 4, 6-trinitrophenol, 2, 4, 6-trinitroresorcinate and 2, 4, 6-trinitrophloroglucinol in soil[J]. Chin. J. Anal. Chem., 2014,42:1183-1188. doi: 10.11895/j.issn.0253-3820.131174

    14. [14]

      Xing S, Bing Q, Qi H, Liu J Y, Bai T Y, Li G H, Shi Z, Feng S H, Xu R R. Rational design and functionalization of a zinc metal-organic framework for highly selective detection of 2, 4, 6-trinitrophenol[J]. ACS Appl. Mater. Interfaces, 2017,9(28):23828-23835. doi: 10.1021/acsami.7b06482

    15. [15]

      Cunha D, Yahia M B, Hall S, Miller S R, Chevreau H, Elkaim E, Maurin G, Horcajada P, Serre C. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks[J]. Chem. Mater., 2013,25:2767-2776. doi: 10.1021/cm400798p

    16. [16]

      Li D S, Wu Y P, Zhao J, Lu J Y. Metal-organic frameworks based upon non-zeotype 4-connected topology[J]. Coord. Chem. Rev., 2014,261:1-27. doi: 10.1016/j.ccr.2013.11.004

    17. [17]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    18. [18]

      Zeng M H, Feng X L, Chen X M. Crystal-to-crystal transformations of a microporous metal-organic laminated framework triggered by guest exchange, dehydration and readsorption[J]. Dalton Trans., 2004(15):2217-2223. doi: 10.1039/B404483P

    19. [19]

      Sun D, Han L L, Yuan S, Deng Y K, Xu M Z, Sun D F. Four new Cd(Ⅱ) coordination polymers with mixed multidentate N-donors and biphenyl-based polycarboxylate ligands: Syntheses, structures, and photoluminescent properties[J]. Cryst. Growth Des., 2013,13:377-385. doi: 10.1021/cg301573c

    20. [20]

      Liu L, Chen X L. , Cai M, Yan R K, Cui H L, Yang H, Wang J J[J]. Zn-MOFs composites loaded with silver nanoparticles are used for fluorescence sensing pesticides, Trp, EDA and photocatalytic degradation of organic dyes. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,289122228.

    21. [21]

      Lustig W P, Teat S J, Li J. Improving LMOF luminescence quantum yield through guest-mediated rigidification[J]. J. Mater. Chem. C, 2019,7(46):14739-14744. doi: 10.1039/C9TC05216J

    22. [22]

      Patra S, Maity N. Recent advances in (hetero) dimetallic systems towards tandem catalysis[J]. Coord. Chem. Rev., 2021,434213803. doi: 10.1016/j.ccr.2021.213803

    23. [23]

      Chen X L, Shang L, Liu L, Yang H, Cui H L, Wang J J. A highly sensitive and multi-responsive Tb-MOF fluorescent sensor for the detection of Pb2+, Cr2O72-, B4O72-, aniline, nitrobenzene and cefixime[J]. Dyes Pigment., 2021,196109809. doi: 10.1016/j.dyepig.2021.109809

    24. [24]

      Samanta P, Let S, Mandal W, Dutta S, Ghosh S K. Luminescent metal-organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants[J]. Inorg. Chem. Front., 2020,7(9):1801-1821. doi: 10.1039/D0QI00167H

    25. [25]

      He J, Xu J L, Yin J C, Li N, Bu X H. Recent advances in luminescent metal-organic frameworks for chemical sensors[J]. Sci. China Mater., 2019,62(11):1655-1678. doi: 10.1007/s40843-019-1169-9

    26. [26]

      Wen G X, Wu Y P, Dong W W, Zhao J, Li D S, Zhang J. An ultrastable europium(Ⅲ)-organic framework with the capacity of discriminating Fe2+/Fe3+ ions in various solutions[J]. Inorg. Chem., 2016,55(20):10114-10117. doi: 10.1021/acs.inorgchem.6b01876

    27. [27]

      Zhou Z, Han M L, Fu H R, Ma L F, Luo F, Li D S. Engineering design toward exploring the functional group substitution in 1D channels of Zn-organic frameworks upon nitro explosives and antibiotics detection[J]. Dalton Trans., 2018,47(15):5359-5365. doi: 10.1039/C8DT00594J

    28. [28]

      Li D S, Wei J H, Yi J W, Han M L, Li B, Liu S, Wu Y P, Ma L F. A new water-stable terbium(Ⅲ)-organic framework as a chemosensor for inorganic ions, nitro-compounds and antibiotics in aqueous solutions[J]. Chem.-Asian J., 2019,14:3694-3701. doi: 10.1002/asia.201900706

    29. [29]

      Zhang J, Liu Y, Feng J, Gong L, Humphrey M G, Zhang C. Decanuclear cluster-based metal-organic framework with a (3, 11)-connected topology and highly sensitive 2, 4, 6-trinitrophenol detection[J]. Inorg. Chem., 2019,58(15):9749-9755. doi: 10.1021/acs.inorgchem.9b00745

    30. [30]

      Tian D, Li Y, Chen R Y, Chang Z, Wang G Y, Bu X H. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives[J]. J. Mater. Chem., 2014,2(5):1465-1470. doi: 10.1039/C3TA13983B

    31. [31]

      Zhang X D, Hua J A, Guo J H, Zhao Y, Sun W Y. Cadmium(Ⅱ) coordination polymers based on 2-(4-((E)-2-(pyridine-2-yl) vinyl) styryl) pyridine and dicarboxylate ligands as fluorescent sensors for TNP[J]. J. Mater. Chem., 2018,6(46):12623-12630.

    32. [32]

      Echeverri M, Ruiz C, Gamez-Valenzuela S, Martin I, Delgado M C R, Gutierrez-Puebla E, Monge M A, Aguirre-Diaz L M, Gomez-Lor B. Untangling the mechanochromic properties of benzothiadiazole-based luminescent polymorphs through supramolecular organic framework topology[J]. J. Am. Chem. Soc., 2020,142:17147-17155. doi: 10.1021/jacs.0c08059

    33. [33]

      Jia R N, Tian W G, Bai H T, Zhang J M, Wang S, Zhang J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness[J]. Nat. Commun., 2019,10795. doi: 10.1038/s41467-019-08675-3

    34. [34]

      Xiao Z, Li D B, Zhang L G, Wang H R, Qin J H, Yang X G, Wu Y P, Li D S. Dimension-dependent fluorescence emission and photoelectric performances of a 3D pyrene-based metal-organic framework[J]. Solid State Chem., 2023,317123690. doi: 10.1016/j.jssc.2022.123690

    35. [35]

      Wiwasuku T, Chuaephon A, Habarakada U, Boonmak J, Puangmali T, Kielar F, Harding D J, Youngme S. A water-stable lanthanide-based mof as a highly sensitive sensor for the selective detection of paraquat in agricultural products[J]. ACS Sustain. Chem. Eng., 2022,10(8):2761-2771. doi: 10.1021/acssuschemeng.1c07966

    36. [36]

      Mukhopadhyay A, Jindal S, Savitha G, Moorthy J N. Temperature-dependent emission and turn-off fluorescence sensing of hazardous "quat" herbicides in water by a Zn-MOF based on a semi-rigid dibenzochrysene tetraacetic acid linker[J]. Inorg. Chem., 2020,59(9):6202-6213. doi: 10.1021/acs.inorgchem.0c00307

    37. [37]

      Shi X H, Qiao Y H, Luan X Y, Yuan Y P, Xu L, Chang Z Y. A two-stage framework for detection of pesticide residues in soil based on gas sensors[J]. Chin. J. Anal. Chem., 2022,50100124. doi: 10.1016/j.cjac.2022.100124

    38. [38]

      Eskandari H, Amirzehni M, Hassanzadeh J, Vahid B. Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: Application for chlorpyrifos[J]. Microchim. Acta, 2020,187(12):673-683. doi: 10.1007/s00604-020-04654-4

    39. [39]

      Zhao Y, Xu X Y, Qiu L, Kang X J, Wen L L, Zhang B G. Metal-organic frameworks constructed from a new thiophene-functionalized dicarboxylate: Luminescence sensing and pesticide removal[J]. ACS Appl. Mater. Interfaces, 2017,9(17):15164-15175. doi: 10.1021/acsami.6b11797

    40. [40]

      Sun A H, Yang Y H, Liu Y F, Ding L, Duan P, Yang W T, Pan Q H. A zinc coordination polymer sensor for selective and sensitive detection of doxycycline based on fluorescence enhancement[J]. Cryst. Growth Des., 2021,21(9):4971-4978. doi: 10.1021/acs.cgd.1c00406

    41. [41]

      Li C H, Zhu L, Yang W X, He X, Zhao S L, Zhang X S, Tang W Z, Wang J L, Yue T L, Li Z H. Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in milk[J]. J. Agric. Food Chem., 2019,67(4):1277-1283. doi: 10.1021/acs.jafc.8b06253

    42. [42]

      Zhu X D, Zhang K, Wang Y, Long W W, Sa R J, Liu T F, Lv J. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater[J]. Inorg. Chem., 2018,57(3):1060-1065. doi: 10.1021/acs.inorgchem.7b02471

    43. [43]

      Wang H H, Zhang Y, Yang D B, Hou L, Li Z Y, Wang Y Y. Fluorine-substituted regulation in two comparable isostructural Cd(Ⅱ) coordination polymers: Enhanced fluorescence detection for tetracyclines in water[J]. Cryst. Growth Des., 2021,21(4):2488-2497. doi: 10.1021/acs.cgd.1c00110

    44. [44]

      Xiao J N, Liu M Y, Tian F L, Liu Z L. Stable europium-based metal-organic frameworks for naked-eye ultrasensitive detecting fluoroquinolones antibiotics[J]. Inorg. Chem., 2021,60(7):5282-5289. doi: 10.1021/acs.inorgchem.1c00263

    45. [45]

      Sun T C, Fan R Q, Zhang J, Qin M Y, Chen W, Jiang X, Zhu K, Ji C S, Hao S, Yang Y L. Stimuli-responsive metal-organic framework on a metal-organic framework heterostructure for efficient antibiotic detection and anticounterfeiting[J]. ACS Appl. Mater. Interfaces, 2021,13(30):35689-35699. doi: 10.1021/acsami.1c08078

    46. [46]

      Tang Y L, Wu H F, Chen J M, Jia J L, Yu J P, Xu W, Fu Y Y, He Q G, Cao H M, Cheng J G. A highly fluorescent metal-organic framework probe for 2, 4, 6-trinitrophenol detection via post-synthetic modification of UIO-66-NH2[J]. Dyes Pigment., 2019,167:10-15. doi: 10.1016/j.dyepig.2019.03.055

    47. [47]

      Hazra A, Bej S, Mondal A, Murmu N C, Banerjee P. Discerning detection of mutagenic biopollutant TNP from water and soil samples with transition metal-containing luminescence metal-organic frameworks[J]. ACS Omega, 2020,5(26):15949-15961. doi: 10.1021/acsomega.0c01194

    48. [48]

      Xiao Y, Wang Y, You Z X, Guan Q L, Xing Y H, Bai F Y, Sun L X. Self-assembled Cd-MOF material supported by a triazine skeleton: Stimuli response to traces of nitroaromatics and amines[J]. Cryst. Growth Des., 2022,22(12):6967-6976. doi: 10.1021/acs.cgd.2c00637

    49. [49]

      HE J, XU J L, YIN J C, LI N, BU X H. Recent advances in luminescent metal-organic frameworks for chemical sensors[J]. Sci. China Mater., 2019,62(11):1655-1678.  

    50. [50]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244

    51. [51]

      LIU S, HU M F, LI L L, WANG W Z. Structures, photoluminescent and magnetic properties of three 2D lanthanide complexes[J]. Chinese J. Inorg. Chem., 2022,38(4):716-724.

    52. [52]

      ZHOU M X, REN N, ZHANG J J. Four rare earth complexes with chlorinated carboxylic acids and bipyridine ligands: Crystal structures, thermal analysis and luminescence properties[J]. Chinese J. Inorg. Chem., 2020,36(12):2349-2358.  

    53. [53]

      LI H D, ZHAI L J, SONG Y B, NIU Y L. Two nitronyl nitroxide biradical-bridged lanthanide one-dimensional chains: Crystal, structure, magnetic properties and luminescent behavior[J]. Chinese J. Inorg. Chem., 2021,37(5):914-920.  

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    7. [7]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    20. [20]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

Metrics
  • PDF Downloads(0)
  • Abstract views(86)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return