Citation: Huan ZHANG, Jijiang WANG, Guang FAN, Long TANG, Erlin YUE, Chao BAI, Xiao WANG, Yuqi ZHANG. A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291 shu

A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol

Figures(6)

  • A new metal-organic framework (MOF) {[Cd(L)0.5(4, 4'-bpy)0.5]·H2O}n (1), where H4L=(1, 1': 4', 1″-terphenyl)-2, 2″, 4, 4″-tetracarboxylic acid, 4, 4'-bpy=4, 4'-bipyridine, was synthesized by hydro-solvothermal method. The structure of complex 1 was characterized by single-crystal X-ray diffraction, elemental analysis, powder X-ray diffraction, thermogravimetric analysis, and infrared spectrum analysis. The analysis of single crystal structure shows that 1 is a 3D structure, belonging to the monoclinic crystal system, C2/c space group. Cd(Ⅱ) connects L4- and 4, 4'-bpy to form a 2D plane structure, and the layers are connected by L4- to form a 3D network structure. The MOF shows good stability and can be used for the detection of tetracycline (TET) and p-nitrophenol (4-NP) by fluorescence quenching. The detection limits of TET and 4-NP were 0.15 and 0.062 μmol·L-1, respectively. In addition, the fluorescence quenching mechanism of 1 was also studied. 1 can be successfully applied to the determination of TET and 4-NP content in Yanhe water samples.
  • 加载中
    1. [1]

      Meng L, Lan C W, Liu Z H, Xu N, Wu Y Q. A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics[J]. Anal. Chim. Acta, 2019,1089:144-151. doi: 10.1016/j.aca.2019.08.065

    2. [2]

      Li C H, Zhu L, Yang W X, He X, Zhao S L, Zhang X S, Tang W Z, Wang J L, Yue T L, Li Z H. Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in milk[J]. J. Agric. Food Chem., 2019,67(4):1277-1283. doi: 10.1021/acs.jafc.8b06253

    3. [3]

      Thangavelu D, Chen Y F, Annamalai P, Ramadoss M, Narayanan V. Rationally designed Ag@polymer@2-D LDH nanoflakes for bifunctional efficient electrochemical sensing of 4-nitrophenol and water oxidation reaction[J]. ACS Appl. Mater. Interfaces, 2022,14(5):6518-6527. doi: 10.1021/acsami.1c19077

    4. [4]

      Hu L L, Peng F, Xia D H, He H J W, He C, Fang Z K, Yang J L, Tian S H, Sharma V K, Shu D. Carbohydrates-derived nitrogen-doped hierarchical porous carbon for ultrasensitive detection of 4-nitrophenol[J]. ACS Sustainable Chem. Eng., 2018,6(12):17391-17401. doi: 10.1021/acssuschemeng.8b05169

    5. [5]

      Wang Z J, Qin L, Chen J X, Zheng H G. H-bonding interactions induced two isostructural Cd(Ⅱ) metal-organic frameworks showing different selective detection of nitroaromatic explosives[J]. Inorg. Chem., 2016,55(21):10999-11005. doi: 10.1021/acs.inorgchem.6b01521

    6. [6]

      Pan M Q, Yang R Q, Muhammad Y, Cai K T, Han F, Zhang H C, Niu Y Q, Wang H. Crystal structure, Fe3+ luminescence sensing and color tuning of 2D lanthanide-metal-organic frameworks constructed from tricarboxylic acid ligand[J]. Chin. J. Struct. Chem., 2022,41(2)2202023.

    7. [7]

      Sun H P, Li Z X, Gu Y, Guo C X. A review on the progress of metal-organic frameworks in electrochemiluminescence sensors[J]. Chin. J. Struct. Chem., 2022,41(11)2211018.

    8. [8]

      Liang N N, Hu X T, Zhang X A, Li W T, Guo Z, Huang X W, Li Z H, Zhang R J, Shen T T, Zou X B, Shi J Y. Ratiometric sensing for ultratrace tetracycline using electrochemically active metal-organic frameworks as response signals[J]. J. Agric. Food Chem., 2023,71(19):7584-7592. doi: 10.1021/acs.jafc.3c00846

    9. [9]

      Zhao Y F, Zeng H, Zhu X W, Lu W G, Li D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021,50(7):4484-4513. doi: 10.1039/D0CS00955E

    10. [10]

      Liang Q N, Chen J M, Wang F L, Li Y W. Transition metal-based metal-organic frameworks for oxygen evolution reaction[J]. Coord. Chem. Rev., 2020,424:213488-213511. doi: 10.1016/j.ccr.2020.213488

    11. [11]

      Sakamoto N, Nishimura Y F, Nonaka T, Ohashi M, Ishida N, Kitazumi K, Kato Y, Sekizawa K, Morikawa T, Arai T. Self-assembled cuprous coordination polymer as a catalyst for CO2 electrochemical reduction into C2 products[J]. ACS Catal., 2020,10(18):10412-10419. doi: 10.1021/acscatal.0c01593

    12. [12]

      Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F, Varma R S, Iravani S. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms[J]. Environ. Res., 2023,226115664. doi: 10.1016/j.envres.2023.115664

    13. [13]

      Zhang R Y, Zhu L L, Yue B B. Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks[J]. Chin. Chem. Lett., 2023,34(2)108009. doi: 10.1016/j.cclet.2022.108009

    14. [14]

      Yeston J. Americium in a MOF[J]. Science, 2019,366:69-70. doi: 10.1126/science.2019.366.6461.twil

    15. [15]

      Liang Y, Xu X D, Ni J L, Li J F, Wang F M. Synthesis, structure and fluorescence property of new Cd-MOFs based on a tetraphenylethylene (TPE) ligand[J]. Chin. J. Struct. Chem., 2021,40(2):193-198.

    16. [16]

      Li R W, Yan J T, Feng B, Sun M, Ding C F, Shen H, Zhu J H, Yu S N. Ultrasensitive detection of multidrug-resistant bacteria based on boric acid-functionalized fluorescent MOF@COF[J]. ACS Appl. Mater. Interfaces, 2023,15(15):18663-18671. doi: 10.1021/acsami.3c00632

    17. [17]

      Hu Y L, Dai L M, Liu D H, Du W, Wang Y J. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renew. Sust. Energ. Rev., 2018,91:793-801. doi: 10.1016/j.rser.2018.04.103

    18. [18]

      Khalil I E, Fonseca J, Reithofer M R, Eder T, Chin J M. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance[J]. Coord. Chem. Rev., 2023,481215043. doi: 10.1016/j.ccr.2023.215043

    19. [19]

      Bhattacharya S, Bhattacharyya A J, Natarajan S. High proton mobility, solvent induced single crystal to single crystal structural transformation, and related studies on a family of compounds formed from Mn3 oxo-clusters[J]. Inorg. Chem., 2015,54(4):1254-1271. doi: 10.1021/ic5018517

    20. [20]

      Yang X G, Zhang J R, Tian X K, Qin J H, Zhang X Y, Ma L F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions[J]. Angew. Chem. Int. Ed., 2023,62(7)e202216699. doi: 10.1002/anie.202216699

    21. [21]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,30(37)e1705189. doi: 10.1002/adma.201705189

    22. [22]

      Wang W, Wang Y X, Yang H B. Supramolecular transformations within discrete coordination-driven supramolecular architectures[J]. Chem. Soc. Rev., 2016,45(9):2656-2693. doi: 10.1039/C5CS00301F

    23. [23]

      Kole G K, Vittal J J. Solid-state reactivity and structural transformations involving coordination polymers[J]. Chem. Soc. Rev., 2013,42(4):1755-1775. doi: 10.1039/C2CS35234F

    24. [24]

      Chandrasekhar P, Mukhopadhyay A, Savitha G, Savitha G, Moorthy J N. Remarkably selective and enantiodifferentiating sensing of histidine by a fluorescent homochiral Zn-MOF based on pyrene-tetralactic acid[J]. Chem. Sci., 2016,7(5):3085-3091. doi: 10.1039/C5SC03839A

    25. [25]

      Wang S Q, Wang L, Zhu Y M, Song Y H. Fluorescent detection of S2- based on ZnMOF-74 and CuMOF-74[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,236118327. doi: 10.1016/j.saa.2020.118327

    26. [26]

      Farahani Y D, Safarifard V. Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores[J]. J. Solid State Chem., 2019,275:131-140. doi: 10.1016/j.jssc.2019.04.018

    27. [27]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    28. [28]

      Ma Y S, Zhang X M, Bai J L, Huang K, Ren L L. Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots[J]. Chem. Eng. J., 2019,374:787-792. doi: 10.1016/j.cej.2019.06.016

    29. [29]

      Liu L, Chen Q, Lv J, Li Y P, Wang K C, Li J R. Stable metal-organic frameworks for fluorescent detection of tetracycline antibiotics[J]. Inorg. Chem., 2022,61(20):8015-8021. doi: 10.1021/acs.inorgchem.2c00754

    30. [30]

      Singh H, Thakur B, Bhardwaj S K, Khatri M, Kim K H, Bhardwaj N. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review[J]. Food Chem., 2023,426(15)136657.

    31. [31]

      Lee J Y, Root H D, Ali R, An W, Lynch V M, Bähring S, Kim I S, Sessler J L, Park J S. Ratiometric turn-on fluorophore displacement ensembles for nitroaromatic explosives detection[J]. J. Am. Chem. Soc., 2020,142(46):19579-19587. doi: 10.1021/jacs.0c08106

    32. [32]

      Ma Y X, Li H, Peng S, Wang L Y. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection[J]. Anal. Chem., 2012,84(19):8415-8421. doi: 10.1021/ac302138c

    33. [33]

      Dang S, Ma E, Sun Z M, Zhang H J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach[J]. J. Mater. Chem. C, 2012,22:16920-16926. doi: 10.1039/c2jm32661b

    34. [34]

      Chen Z, Sun Y W, Zhang L L, Sun D, Liu F L, Meng Q G, Wang R M, Sun D F. A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions[J]. Chem. Commun., 2013,49:11557-11559. doi: 10.1039/c3cc46613b

    35. [35]

      Jung H S, Verwilst P, Kim W Y, Kim J S. Fluorescent and colorimetric sensors for the detection of humidity or water content[J]. Chem. Soc. Rev., 2016,45(5):1242-1256. doi: 10.1039/C5CS00494B

    36. [36]

      Sun X C, Wang Y, Yu L. Fluorescence based explosive detection: From mechanisms to sensory materials[J]. Chem. Soc. Rev., 2015,44(22):8019-8061. doi: 10.1039/C5CS00496A

    37. [37]

      Zhang Y Z, Xiang X, Mei P, Dai J, Zhang L L, Liu L. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2009,72(4):907-914. doi: 10.1016/j.saa.2008.12.007

    38. [38]

      Xu H, Gao J K, Qian X F, Wang J P, He H J, Cui Y J, Yang Y, Wang Z Y, Qian G D. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+[J]. J. Mater. Chem. A, 2016,4(28):10900-10905. doi: 10.1039/C6TA03065C

    39. [39]

      XU X Y, CUI H L, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Synthesis and fluorescence sensing for Fe3+ and p-nitrophenol of a copper coordination polymer[J]. Chinese J. Inorg. Chem., 2022,38(12):2539-2549.  

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(0)
  • Abstract views(143)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return