Citation: Wenjiang LI, Pingli GUAN, Rui YU, Yuansheng CHENG, Xianwen WEI. C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289 shu

C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance

Figures(8)

  • Molybdenum phosphide-carbon nanoflowers (MoP-CFs) were prepared by the gas-solidification method, and C60 was modified on the surface of MoP-CFs to form van der Waals heterojunctions by simple ultrasonic self-assembly. It is found that the modification of C60 can effectively reduce the overpotential of electrocatalytic hydrogen evolution. Among all samples, 10% C60-MoP-CFs (10% was the mass fraction of C60) exhibited the best catalytic activity with overpotentials of 158 and 157 mV to achieve a current density of 10 mA·cm-2 in acidic and alkaline conditions, respectively. Moreover, this sample also showed good stability which could work stably for more than 20 h. The strong electron coupling between C60 and MoP-CFs promotes electron migration from C60 to the surface of MoP-CFs, reduces the charge transport resistance, and accelerates the electrocatalytic hydrogen evolution interface reaction kinetics process.
  • 加载中
    1. [1]

      Huang F H, Wang J Z, Wang M, Zhang C, Xue Y N, Liu J, Xu T, Cai N, Chen W M, Yu F Q. Core-shell Ni2P@CoP nanoarrays supported on NF as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. J. Colloid Surface A, 2021,623(20)126526.

    2. [2]

      Yang H Y, Chen Z L, Guo P F, Fei B, Wu R B. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2020,261118240. doi: 10.1016/j.apcatb.2019.118240

    3. [3]

      Zhao Z J, Zhu Z X, Bao X B, Wang F, Li S J, Liu S J, Yang Y. Facile construction of metal phosphides (MP, M=Co, Ni, Fe, and Cu) wrapped in three-dimensional N, P-codoped carbon skeleton toward highly efficient hydrogen evolution catalysis and lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2021,13(8):9820-9829. doi: 10.1021/acsami.0c19914

    4. [4]

      Chu W J, Shi Z J, Hou Y D, Ma D N, Bai X, Gao Y F, Yang N J. Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2020,12(2):2763-2772. doi: 10.1021/acsami.9b13182

    5. [5]

      Wang W Q, Xi S M, Shao Y L, Sun W H, Wang S K, Gao J F, Mao C M, Guo X S, Li G C. Oxide passivated CoNi@NC-supported Ru(OH)xCly cluster as highly efficient catalysts for the oxygen and hydrogen evolution[J]. ACS Sustain. Chem. Eng., 2019,7(20):17227-17236. doi: 10.1021/acssuschemeng.9b03884

    6. [6]

      Zhu Y R, Lu P C, Li F Z, Ding Y H, Chen Y F. Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices[J]. ACS Appl. Energy Mater., 2021,4(4):3962-3974. doi: 10.1021/acsaem.1c00335

    7. [7]

      Jin M T, Zhang X, Shi R, Lian Q, Niu S Z, Peng O W, Wang Q, Cheng C. Hierarchical CoP@Ni2P catalysts for pH-universal hydrogen evolution at high current density[J]. Appl. Catal. B: Environ., 2021,296(5)120423.

    8. [8]

      Jiang X L, Li Y, He M, Zhou L X, Zheng Q J, Xie F Y, Jie W J, Lin D M. Construction of NiFeP/CoP nanosheets/nanowires hierarchical array as advanced electrocatalysts for water oxidation[J]. Int. J. Hydrog. Energy, 2019,44(36):19986-19994. doi: 10.1016/j.ijhydene.2019.06.018

    9. [9]

      Rao Y, Wang S W, Zhang R Y, Jiang S H, Chen S, Yu Y N, Bao S J, Xu M W, Yue Q, Xin H L, Kang Y J. Nanoporous V-doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH[J]. ACS Appl. Mater. Interfaces, 2020,12(33):37092-37099. doi: 10.1021/acsami.0c08202

    10. [10]

      Das M, Jena N, Purkait T, Kamboj N, Sarkar A D, Dey R S. Single-phase Ni5P4-copper foam superhydrophilic and aerophobic core-shell nanostructures for efficient hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019,7(41):23989-23999. doi: 10.1039/C9TA06729A

    11. [11]

      Mishra I K, Zhou H Q, Sun J Y, Qin F, Dahal K, Bao J M, Chen S, Ren Z F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation[J]. Energy Environ. Sci., 2018,11(8):2246-2252. doi: 10.1039/C8EE01270A

    12. [12]

      Tong C, Xiang R, Peng L S, Tan L Q, Tang X Y, Wang J C, Li L, Liao Q, Wei Z D. Amorphous FeOx (x=1, 1.5) coated Cu3P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts[J]. J. Mater. Chem. A, 2020,8(6):3351-3356. doi: 10.1039/C9TA11779B

    13. [13]

      Liu M, Zhang R, Zhang L X, Liu D N, Hao S, Du G, Asiri A M, Kong R M, Sun X P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction[J]. Inorg. Chem. Front., 2017,4(3):420-423. doi: 10.1039/C6QI00384B

    14. [14]

      Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J]. Angew. Chem. Int. Ed., 2014,53(36):9577-9581. doi: 10.1002/anie.201403842

    15. [15]

      Wang P Y, Wang X Q, Diao R Y, Guo Y J, Wang Y X, Zhou C, Xie K F, Sun S M, Zhang Y H. Hierarchical tubular MoP/MoS2 composite with enhanced electrochemical hydrogen evolution activity[J]. J. Mater. Sci.-Mater. Electron., 2021,32(10):14047-14056. doi: 10.1007/s10854-021-05984-6

    16. [16]

      Lin L F, Chen M, Wu L M. Hierarchical MoP/NiFeP hybrid hollow spheres as highly efficient bifunctional electrocatalysts for overall water splitting[J]. Mater. Chem. Front., 2021,5(1):375-385. doi: 10.1039/D0QM00635A

    17. [17]

      Liang K, Pakhira S, Yang Z Z, Nijamudheen A, Ju L C, Wang M Y, Aguirre Velez C I, Sterbinsky G E, Du Y G, Feng Z X, Mendoza Cortes G L, Yang Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte[J]. ACS Catal., 2019,9(1):651-659. doi: 10.1021/acscatal.8b04291

    18. [18]

      Wu Z X, Wang J, Zhu J, Guo J P, Xiao W P, Xuan C J, Lei W, Wang D L. Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution[J]. Electrochim. Acta, 2017,232(1):254-261.

    19. [19]

      Du C C, Shang M X, Mao J X, Song W B. Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting[J]. J. Mater. Chem. A, 2017,5(30):15940-15949. doi: 10.1039/C7TA03669H

    20. [20]

      Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chem. Soc. Rev., 2016,45(6):1529-1541. doi: 10.1039/C5CS00434A

    21. [21]

      Xu H B, Li H Z, Xie L, Zhao D Y, Kong B. Interfacial assembly of functional mesoporous carbon-based materials into films for batteries and electrocatalysis[J]. Adv. Mater. Interfaces, 2022,9(10)2101998. doi: 10.1002/admi.202101998

    22. [22]

      CHENG Y S, CAI H D, LING M, SONG C, WEI X W. Fullerene-based materials in photocatalysis and electrochemical catalysis: Fundamentals and applications[J]. Chinese J. Inorg. Chem., 2020,36(6):1014-1034.  

    23. [23]

      Choi T H, Lee J, Parija A, Cho J, Verkhoturov S V, Al-Hashimi M, Fang L, Banerjee S. An in situ sulfidation approach for the integration of MoS2 nanosheets on carbon fiber paper and the modulation of its electrocatalytic activity by interfacing with nC60[J]. ACS Catal., 2016,6(9):6246-6254. doi: 10.1021/acscatal.6b01942

    24. [24]

      Gao R, Dai Q B, Du F, Yan D P, Dai L M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution[J]. J. Am. Chem. Soc., 2019,141(29):11658-11666. doi: 10.1021/jacs.9b05006

    25. [25]

      Yu D L, Guan P L, Huang Y F, Cheng Y S, Ling M, Wu K L, Wu F H, Wei X W. In-situ construction of water-soluble C60 derivative modified cobalt phosphides for efficient electrocatalytic hydrogen evolution in acidic and alkaline media[J]. Mater. Lett., 2023,352135184. doi: 10.1016/j.matlet.2023.135184

    26. [26]

      Zhu X J, Zhang T M, Jiang D C, Duan H L, Sun Z J, Zhang M M, Jin H C, Guan R N, Liu Y J, Chen M Q, Ji H X, Du P W, Yan W S, Wei S Q, Lu Y L, Yang S F. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules[J]. Nat. Commun., 2018,9(1)4177. doi: 10.1038/s41467-018-06437-1

    27. [27]

      Wei T R, Liu W X, Zhang S S, Liu Q, Luo J, Liu X J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production[J]. Chem. Commun., 2023,59:442-445. doi: 10.1039/D2CC05722K

    28. [28]

      Zhang Q, Lian K, Liu Q, Qi G C, Zhang S S, Luo J, Liu X J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries[J]. J. Colloid Interface Sci., 2023,646:844-854. doi: 10.1016/j.jcis.2023.05.074

    29. [29]

      Gao S S, Zhang Y, Zhang Y J, Wang B, Yang S C. Modification of carbon nanotubes via birch reaction for enhanced HER catalyst by constructing pearl necklace-like NiCo2P2-CNT composite[J]. Small, 2018,14(51)1804388. doi: 10.1002/smll.201804388

    30. [30]

      Hui S, Wei T R, Liu Q, Zhang S S, Luo J, Liu X J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production[J]. J. Colloid Interface Sci., 2023,634:730-736. doi: 10.1016/j.jcis.2022.12.067

    31. [31]

      Zhang J T, Wang X D, Xue Y R, Xu Z Y, Pei J J, Zhuang Z B. Self-assembly precursor-derived MoP supported on N, P-codoped reduced graphene oxides as efficient catalysts for hydrogen evolution reaction[J]. Inorg. Chem., 2018,57(21):13859-13865. doi: 10.1021/acs.inorgchem.8b02359

    32. [32]

      Liu B C, Li H, Cao B, Jiang J N, Gao R, Zhang J. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range[J]. Adv. Funct. Mater., 2018,28(30)1801527. doi: 10.1002/adfm.201801527

    33. [33]

      Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catal., 2012,2(5):781-794. doi: 10.1021/cs200652y

    34. [34]

      Fu H B, Xu T G, Zhu S B, Zhu Y F. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60[J]. Environ. Sci. Technol., 2008,42(21):8064-8069. doi: 10.1021/es801484x

    35. [35]

      Hare J P, John Dennis T, Kroto H W, Taylor R, Wahab Allaf A, Balm S, Walton D R M. The IR spectra of fullerene-60 and -70[J]. J. Chem. Soc. Chem. Commun., 1991,6:412-413.

    36. [36]

      Zhang W, Yan H J, Liu Y, Wang D X, Jiao Y Q, Wu A P, Wang X W, Wang R H, Tian C G. Multi-interfacial engineering of an interlinked Ni2P-MoP heterojunction to modulate the electronic structure for efficient overall water splitting[J]. J. Mater. Chem. A, 2023,11(27):15033-15043. doi: 10.1039/D3TA01789C

    37. [37]

      Huang X K, Wang X, Jiang P B, Lan K, Qin J H, Gong L, Wang K Z, Yang M, Ma L, Li R. Ultrasmall MoP encapsulated in nitrogen-doped carbon hybrid frameworks for highly efficient hydrogen evolution reaction in both acid and alkaline solutions[J]. Inorg. Chem. Front., 2019,6(6):1482-1489. doi: 10.1039/C9QI00279K

    38. [38]

      Yang C, Wang X P, Wu Y L, T , Hu T L, Jin Z L. Rational construction of electrostatic self-assembly of metallike MoP and ZnIn2S4 based on density functional theory to form Schottky junction for photocatalytic hydrogen production[J]. Sol. RRL, 2023,7(11)2300311.

    39. [39]

      Kolsch S, Fritz F, Fenner M A, Kurch S, Wöhrl N, Mayne A J, Dujardin G, Meyer C. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond[J]. J. Appl. Phys., 2018,123(1)015103. doi: 10.1063/1.5019486

    40. [40]

      Wei C, Xu Z J. The comprehensive understanding of 10 mA·cmgeo-2 as an evaluation parameter for electrochemical water splitting[J]. Small Methods, 2018,2(11)1800168. doi: 10.1002/smtd.201800168

    41. [41]

      Wei T R, Meng G, Zhou Y H, Wang Z F, Liu Q, Luo J, Liu X J. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater[J]. Chem. Commun., 2023,59(66):9992-9995. doi: 10.1039/D3CC02419A

    42. [42]

      Pu Z H, Saana Amiinu I, Wang M, Yang Y S, Mu S C. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range[J]. Nanoscale, 2016,8(16):8500-8504. doi: 10.1039/C6NR00820H

    43. [43]

      Wu Z X, Wang J, Liu R, Xia K D, Xuan C J, Guo J P, Lei W, Wang D L. Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes[J]. Nano Energy, 2017,32:511-519. doi: 10.1016/j.nanoen.2017.01.014

    44. [44]

      Ojha K, Sharma M, Kolev H, Ganguli A K. Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media[J]. Catal. Sci. Technol., 2017,7(3):668-676. doi: 10.1039/C6CY02406H

    45. [45]

      Li Y, Cai L, Huang Q L, Liu J, Tang R R, Zhou W H. Highly efficient synthesis of carbon-based molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution[J]. Nanoscale Res. Lett., 2020,15(1)6. doi: 10.1186/s11671-020-3246-x

    46. [46]

      Yan H J, Jiao Y Q, Wu A P, Tian C G, Zhang X M, Wang L, Ren Z Y, Fu H G. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range[J]. Chem. Commun., 2016,52(61):9530-9533. doi: 10.1039/C6CC04220A

    47. [47]

      Zhao Y, Wang S, Li C Y, Yu X B, Zhu C L, Zhang X T, Chen Y J. Nanostructured molybdenum phosphide/N, P dual-doped carbon nanotube composite as electrocatalysts for hydrogen evolution[J]. RSC Adv., 2016,6(9):7370-7377. doi: 10.1039/C5RA24773J

    48. [48]

      Wang D Z, Duan Q F, Wu Z Z. Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation[J]. Mater. Lett., 2019,241:227-230. doi: 10.1016/j.matlet.2019.01.095

    49. [49]

      Zhang X Y, Wu Z Z, Wang D Z. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media[J]. Electrochim. Acta, 2018,281:540-548. doi: 10.1016/j.electacta.2018.05.176

    50. [50]

      Wang K W, Tan J S, Lu Z J, Chen S, She X L, Zhang H W, Yang D J. Nanoscale engineering MoP/Fe2P/RGO toward efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2018,43(30):13939-13945. doi: 10.1016/j.ijhydene.2018.02.012

    51. [51]

      Liang X, Zhang D Z, Wu Z Z, Wang D Z. The Fe-promoted MoP catalyst with high activity for water splitting[J]. Appl. Catal. A-Gen., 2016,524:134-138. doi: 10.1016/j.apcata.2016.06.029

    52. [52]

      Wang T Y, Du K Z, Liu W L, Zhu Z W, Shao Y H, Li M X. Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation[J]. J. Mater. Chem. A, 2015,3(8):4368-4373. doi: 10.1039/C4TA06651K

    53. [53]

      Wang S, Wang J, Li P, Wu Z X, Liu X E. N, P-codoped carbon layer coupled with MoP nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction[J]. Materials, 2018,11(8)1316. doi: 10.3390/ma11081316

    54. [54]

      Chen X B, Wang D Z, Wang Z P, Zhou P, Wu Z Z, Jiang F. Molybdenum phosphide: A new highly efficient catalyst for the electrochemical hydrogen evolution reaction[J]. Chem. Commum., 2014,50(79):11683-11685. doi: 10.1039/C4CC05936K

    55. [55]

      Wang D Z, Zhang X Y, Zhang D Z, Shen Y L, Wu Z Z. Influence of Mo/P ratio on CoMoP nanoparticles as highly efficient HER catalysts[J]. Appl. Catal. A-Gen., 2016,511:11-15. doi: 10.1016/j.apcata.2015.11.029

    56. [56]

      Wu J, Wang X, Zheng W H, Sun Y, Xie Y, Ma K K, Zhang Z, Liao Q L, Tian Z, Kang Z, Zhang Y. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction[J]. J. Am. Chem. Soc., 2022,144(41):19163-19172. doi: 10.1021/jacs.2c08726

    57. [57]

      Ge W X, Chen Y X, Fan Y, Zhu Y H, Liu H L, Song L, Liu Z, Lian C, Jiang H L, Li C Z. Dynamically formed surfactant assembly at the electrified electrode-electrolyte interface boosting CO2 electroreduction[J]. J. Am. Chem. Soc., 2022,144(14):6613-6622. doi: 10.1021/jacs.2c02486

    58. [58]

      Peng W, Li X G, He Z M, Li Z S, Zhang X Y, Sun X P, Li Q, Yang H, Han J T, Huang Y H. Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2021,299120657. doi: 10.1016/j.apcatb.2021.120657

    59. [59]

      Li J, Huang H, Cao X X, Wu H H, Pan K M, Zhang Q B, Wu N T, Liu X M. Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution[J]. Chem. Eng. J., 2021,416127677. doi: 10.1016/j.cej.2020.127677

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(101)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return