Citation: Xinwen ZHOU, Xiaoyu SHEN, Ce FU, Pan WANG, Luoyi YAN, Zheng CHENG, Guixian TIAN, Ronghua ZHANG. Effects of synthesis and structural regulation of Ir and IrPd catalysts on methanol oxidation performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 412-420. doi: 10.11862/CJIC.20230288 shu

Effects of synthesis and structural regulation of Ir and IrPd catalysts on methanol oxidation performance

Figures(6)

  • Using triblock copolymer P123 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEO20-PPO70-PEO20) as reducing agent and protective agent, the effects of hydrothermal and solvothermal methods on the synthesis of pure Ir and IrPd alloy catalysts and their electrocatalytic oxidation of methanol (MOR) were compared. For pure Ir catalyst, solvothermal method can better promote the reduction of Ir precursor under the same condi- tions. For IrPd alloy catalysts, core-shell structure products (IrPd-S) with rich Ir-surface but low MOR activity can be prepared by solvothermal method. The different atomic ratios (IrPd, Ir2Pd, IrPd2) obtained by hydrothermal reaction have smaller particle sizes and more uniform distribution of elements. Among them, IrPd catalyst with ratio of 1∶1 (IrPd-H) had the highest MOR electrocatalytic activity. These results show that the structure, surface composition and electrocatalytic activity of pure Ir and IrPd alloy catalysts can be effectively adjusted by adjusting the type of solvent and the structural induction of P123.
  • 加载中
    1. [1]

      Quinson J. Iridium and IrOx nanoparticles: An overview and review of syntheses and applications[J]. Adv. Colloid Interface Sci., 2022,303102643. doi: 10.1016/j.cis.2022.102643

    2. [2]

      ZHUANG Z H, CHEN W. Application of atomically precise metal nanoclusters in electrocatalysis[J]. J. Electrochem., 2021,27(2):125-143.

    3. [3]

      Wang S, Shen T, Yang C, Luo G Y, Wang D L. Engineering iridium-based oxygen evolution reaction electrocatalysts for proton exchange membrane water electrolyzers[J]. ACS Catal., 2023,13(13):8670-8691. doi: 10.1021/acscatal.3c01511

    4. [4]

      Liu Y P, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021,42(7):1054-1077. doi: 10.1016/S1872-2067(20)63722-6

    5. [5]

      HU P J, WU Y N, ZHENG H Y, MENG L, JIN L Y, LUO M F. Ir/CeO2 catalysts: Characterization and performance for CO oxidation[J]. Chinese J. Inorg. Chem., 2011,27(12):2389-2394.

    6. [6]

      Quinson J, Kacenauskaite L, Schröder J, Simonsen S B, Kuhn L T, Vosch T, Arenz M. UV-induced syntheses of surfactant-free precious metal nanoparticles in alkaline methanol and ethanol[J]. Nanoscale Adv., 2020,2:2288-2292. doi: 10.1039/D0NA00218F

    7. [7]

      Cooper C, Dooley K M, Fierro-Gonzalez J C, Guzman J, Jentoft R, Lamb H H, Ogino L, Runnebaum R C, Sapre A, Uzun A. Bruce gates: A career in catalysis[J]. ACS Catal., 2020,10:11912-11935. doi: 10.1021/acscatal.0c03568

    8. [8]

      Jin G X, Liu J, Wang C, Gu W X, Ran G X, Liu B, Song Q J. Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols[J]. Appl. Catal. B-Environ., 2020,267(15)118725.

    9. [9]

      Zhu J Y, Xue Q, Xue Y Y, Ding Y, Li F M, Jin P, Chen P, Chen Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions[J]. ACS Appl. Mater. Interfaces, 2020,12:14064-14070. doi: 10.1021/acsami.0c01937

    10. [10]

      Cai C, Wang M Y, Han S B, Wang Q, Zhang Q, Zhu Y M, Yang X M, Wu D J, Zu X T, Sterbinkey G E, Feng Z X, Gu M. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets[J]. ACS Catal., 2020,11:123-130.

    11. [11]

      Zhou X W, Gan Y L, Dai Z X, Zhang R H. Monodispersed Pd nanospheres and their electrocatalytic properties for methanol oxidation in alkaline medium[J]. J. Electroanal. Chem., 2012,685:97-102. doi: 10.1016/j.jelechem.2012.08.036

    12. [12]

      Yang Y, Du J J, Luo L M, Zhang R H, Dai Z X, Zhou X W. Facile aqueous-phase synthesis and electrochemical properties of novel PtPd hollow nanocatalysts[J]. Electrochim. Acta, 2016,212:966-972. doi: 10.1016/j.electacta.2016.07.085

    13. [13]

      Yang Y, Luo L M, Guo Y F, Dai Z X, Zhang R H, Sun C, Zhou X W. In situ synthesis of PtPd bimetallic nanocatalysts supported on graphene nanosheets for methanol oxidation using triblock copolymer as reducer and stabilizer[J]. J. Electroanal. Chem., 2016,783:132-139. doi: 10.1016/j.jelechem.2016.11.034

    14. [14]

      Luo L M, Zhang R H, Du J J, Yang F, Liu H M, Yang Y, Zhou X W. Studies on the synthesis and electrocatalytic properties of hollow PdAu nanocatalysts[J]. Int. J. Hydrog. Energy, 2017,42:16139-16148. doi: 10.1016/j.ijhydene.2017.03.015

    15. [15]

      Hu Q Y, Zhan W, Guo Y F, Luo L M, Zhang R H, Chen D, Zhou X W. Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction[J]. J. Energy Chem., 2020,40:217-223. doi: 10.1016/j.jechem.2019.05.011

    16. [16]

      Fu C, Wang P, Zhang R H, Yan L Y, Cheng Z, Zhang X, Zhou X W. Efficient synthesis of PdIr nanocatalysts with controllable surface composition for electrochemical oxidation of methanol[J]. Fuel, 2023,332126105. doi: 10.1016/j.fuel.2022.126105

    17. [17]

      Xu Z H, Yin Q C, Li X, Meng Q, Xu L S, Lv B S, Zhang G L. Self- assembly of a highly stable and active Co3O4/H-TiO2 bulk heterojunction with high-energy interfacial structures for low temperature CO catalytic oxidation[J]. Catal. Sci. Technol., 2020,10(24):8374-8382. doi: 10.1039/D0CY01477J

    18. [18]

      Kundu S, Liang H. Shape-selective formation and characterization of catalytically active iridium nanoparticles[J]. J. Colloid Interface Sci., 2011,354:597-606. doi: 10.1016/j.jcis.2010.11.032

    19. [19]

      YANG Y, LUO L M, DU J J, ZHANG R H, DAI Z X, ZHOU X W. Hollow Pt-based nanocatalysts synthesized through galvanic replacement reaction applied in proton exchange membrane fuel cells[J]. Acta Phys.-Chim. Sin., 2016,32(4):834-847.

    20. [20]

      Hu Q Y, Zhang R H, Chen D, Guo Y F, Zhan W, Luo L M, Zhou X W. Facile aqueous phase synthesis of 3D-netlike PdRh nanocatalysts for methanol oxidation[J]. Int. J. Hydrog. Energy, 2019,44:16287-16296. doi: 10.1016/j.ijhydene.2019.05.048

    21. [21]

      Zhan W, Cheng Z, Zhang R H, Yan L Y, Tian G X, Lin D H, Xiao S Z, Zhou X W. In situ construction of chain-like PdAg/AgCl heterojunction electrocatalyst for ethylene glycol oxidation[J]. J. Electroanal. Chem., 2023,942117547. doi: 10.1016/j.jelechem.2023.117547

    22. [22]

      Lee Y W, Kim M J, Kim Z H, Ham S W. One-step synthesis of Au@Pd core-shell nanooctahedron[J]. J. Am. Chem. Soc., 2009,131:17036-17037. doi: 10.1021/ja905603p

    23. [23]

      Guo K, Fan D P, Teng Y X, Xu D D, Li Y F, Bao J C. Engineering PdIr nanostructures synergistically induced by self-assembled surfactants and halide ions for alcohol electrooxidation[J]. Chem.-Eur. J., 2022,28e202200053. doi: 10.1002/chem.202200053

    24. [24]

      Shi J Y, Kao C W, Lan J, Jiang K, Peng M, Luo M, Lu Y R, Zhang S G, Tan Y W. Nanoporous PdIr alloy for high-efficiency and durable water splitting in acidic media[J]. J. Mater. Chem. A, 2023,11:11526-11533. doi: 10.1039/D3TA01280H

    25. [25]

      Pulm H, Hohlneicher G, Freund H J, Schushter H U, Drews J, Eberv U. Charge distribution in some ternary vintl phases as studied by v-ray photoelectron spectroscopy[J]. J. Less-Common. Met., 1986,115:127-143. doi: 10.1016/0022-5088(86)90378-4

    26. [26]

      Dückers K, Bonzel H P. Core and valence level spectroscopy with Y Mζ radiation: CO and K on (110) surfaces of Ir, Pt and Au[J]. Surf. Sci., 1989,213:25-48. doi: 10.1016/0039-6028(89)90251-3

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    3. [3]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    4. [4]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    5. [5]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    8. [8]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    15. [15]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    16. [16]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    17. [17]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    18. [18]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    19. [19]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    20. [20]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

Metrics
  • PDF Downloads(0)
  • Abstract views(320)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return