Citation: Cheng PENG, Jianwei WEI, Yating CHEN, Nan HU, Hui ZENG. First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I)[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282 shu

First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I)

  • Corresponding author: Jianwei WEI, redskywei@cqut.edu.cn
  • Received Date: 30 July 2023
    Revised Date: 13 November 2023

Figures(5)

  • The electronic and optical properties of the Cs3Bi2X9 (X=Cl, Br, I) was emphatically explored theoretically by density functional theory methods based on first principles, and the influence of interference effect on the these three crystals is systematically elucidated. Our results reveal that the optical properties of the three materials are dominated by the valence electrons in p-orbitals of the Bi and halogen atoms. In the visible region, the absorption peaks have a red shift with increase of atomic number of halogen increases. The optical absorption is special and very sensitive to the interference structure on one-dimensional Cs3Bi2Cl9, but not to that of two-dimensional Cs3Bi2Br9 and zero-dimensional Cs3Bi2I9. The thickness of the Cs3Bi2Br9 film also influences the optical properties. While the zero-dimensional Cs3Bi2I9 is almost unaffected by crystal thickness and surface characteristic.
  • 加载中
    1. [1]

      Ma C Q, Shen D, Ng T W, Lo M F, Lee C S. 2D perovskites with short interlayer distance for high-performance solar cell application[J]. Adv. Mater., 2018,30(22):2-7.

    2. [2]

      Liu M Y, Niu J, Zhang Z P, Dou M L, Wang F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high-performance supercapacitors[J]. Nano Energy, 2018,51(6):366-372.

    3. [3]

      Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chem. Sci., 2015,6(1):613-617. doi: 10.1039/C4SC03141E

    4. [4]

      Liao P Z, Zhao X J, Li G L, Shen Y, Wang M K. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells[J]. Nano-Micro Lett., 2018,10(1):1-8. doi: 10.1007/s40820-017-0154-4

    5. [5]

      Li Y F, Yang C Y, Guo W S, Duan T W, Zhou Z M, Zhou Y Y. All-inorganic perovskite solar cells featuring mixed group ⅣA cations[J]. Nanoscale, 2023,15:7249-7260. doi: 10.1039/D3NR00133D

    6. [6]

      Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021,592(7854):381-385. doi: 10.1038/s41586-021-03406-5

    7. [7]

      Yang Y, Yang M J, Li Z, Crisp R, Zhu K, Beard M C. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy[J]. J. Phys. Chem. Lett., 2015,6(23):4688-4692. doi: 10.1021/acs.jpclett.5b02290

    8. [8]

      Chouhan A S, Jasti N P, Avasthi S. Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment[J]. Mater. Lett., 2018,221:150-153. doi: 10.1016/j.matlet.2018.03.095

    9. [9]

      Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P. Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: Lessons for reducing defect density and improving stability[J]. Nano Lett., 2018,18(3):2060-2066. doi: 10.1021/acs.nanolett.8b00077

    10. [10]

      Lim J W, Wang H, Choi C H, Kwon H, Quan L N, Park W T, Noh Y Y, Kim D H. Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability[J]. Nano Energy, 2019,57:761-770. doi: 10.1016/j.nanoen.2018.12.068

    11. [11]

      El-Henawey M I, Gebhardt R S, El-Tonsy M M, Chaudhary S. Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells[J]. J. Mater. Chem. A, 2016,4(5):1947-1952. doi: 10.1039/C5TA08656F

    12. [12]

      Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S Il. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133

    13. [13]

      Hamill J C, Schwartz J, Loo Y L. Influence of solvent coordination on hybrid organic-inorganic perovskite formation[J]. ACS Energy Lett., 2018,3(1):92-97. doi: 10.1021/acsenergylett.7b01057

    14. [14]

      Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects[J]. J. Phys. Sci., 2007,2(5):112-118.

    15. [15]

      Wang X T, Zhang T Y, Lou Y B, Zhao Y X. All-inorganic lead-free perovskites for optoelectronic applications[J]. Mater. Chem. Front., 2019,3(3):365-375. doi: 10.1039/C8QM00611C

    16. [16]

      Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. doi: 10.1039/C9TA04114A

    17. [17]

      Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z, Jin Z, Liu J. All-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138(49):15829-15832. doi: 10.1021/jacs.6b10227

    18. [18]

      Ouedraogo N A N, Chen Y C, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y Z. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020,67104249. doi: 10.1016/j.nanoen.2019.104249

    19. [19]

      WANG Y Y, ZHANG Y Z, WEI J W, MA Z W, ZENG H, ZHAO M, YANG C. First principles calculation on photoelectric properties of Cs2TiBr6 by substitution doping with Cl and Pd[J]. Chinese J. Inorg. Chem., 2022,38(5):884-890.  

    20. [20]

      Wen X M, Wang Q, Li W, Li Y Y, Cheng S L, Wang J K, Kurosawa S, Wu Y T. Synthesis and characterization of all-inorganic perovskite cseubr3 single-crystal scintillator[J]. Phys. Status Solidi-Rapid Res. Lett., 2023,17(3)2200341. doi: 10.1002/pssr.202200341

    21. [21]

      Kokalj A. XCrySDen-A new program for displaying crystalline structures and electron densities[J]. J. Mol. Graph. Model., 1999,17(3/4):176-179.

    22. [22]

      Park B W, Philippe B, Zhang X L, Rensmo H, Boschloo G, Johansson E M J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application[J]. Adv. Mater., 2015,27(43):6806-6813. doi: 10.1002/adma.201501978

    23. [23]

      Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E, Melot B C. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2017,56(1):42-45. doi: 10.1021/acs.inorgchem.6b01571

    24. [24]

      Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation[J]. J. Phys.-Condes. Matter, 2002,14(11):2745-2779. doi: 10.1088/0953-8984/14/11/302

    25. [25]

      Ordejón P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys. Rev. B, 1996,53(16):R10441-R10444. doi: 10.1103/PhysRevB.53.R10441

    26. [26]

      Heine V. The pseudopotential concept[J]. J. Solid State Phy., 1970,24:1-36.

    27. [27]

      Ghosh B, Chakraborty S, Wei H, Guet C, Li S. Poor photovoltaic performance of Cs3Bi2I9: An insight through first-principles calculations[J]. J. Phys. Chem., 2017,121(32):17062-17067.

    28. [28]

      Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2016,56(1):42-45.

    29. [29]

      John P, Perdew K B, Matthias E. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    30. [30]

      Kihara K, Sudo T. The crystal structures of β‑Cs3Sb2Cl9 and Cs3Bi2Cl9[J]. Acta Crystallogr. Sect. B, 1974,30(4):1088-1093. doi: 10.1107/S0567740874004316

    31. [31]

      Chang J H, Doert T, Ruck M. Structural variety of defect perovskite variants M3E2X9 (M=Rb, Tl, E=Bi, Sb, X=Br, I)[J]. Z. Anorg. Allg. Chem., 2016,642(13):736-748. doi: 10.1002/zaac.201600179

    32. [32]

      Jung H S, Park N G. Perovskite solar cells: From materials to devices[J]. Small, 2015,11(1):10-25. doi: 10.1002/smll.201402767

    33. [33]

      Pradhan A, Sahoo S C, Sahu A K. Effect of Bi substitution on Cs3Sb2Cl9: Structural phase transition and band gap engineering[J]. Crystal Growth Design, 2020,20(5):3386-3395. doi: 10.1021/acs.cgd.0c00171

    34. [34]

      Peresh E Y, Sidei V I, Zubaka O V. K2(Rb2, Cs2, Tl2)TeBr6(I6) and Rb3(Cs3)Sb2(Bi2)Br9(I9) perovskite compounds[J]. Inorg. Mater., 2011,47(2):208-212. doi: 10.1134/S0020168511010109

    35. [35]

      Bass K K, Estergreen L, Savory C N. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2017,56(1):42-45. doi: 10.1021/acs.inorgchem.6b01571

    36. [36]

      Sidey V I, Zubaka O V, Peresh Y Y. Ternary halides A3B2C9: Crystallochemical peculiarities, dependence of some properties on the average nuclear charge[J]. Sci. Bull. Uzhh. Univ. Ser. Chem., 2018,39(1):10-16.

    37. [37]

      Zhang Y, Yin J, Parida M R, Ahmed G H, Pan J, Bakr O M, Brédas J L, Mohammed O F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals[J]. J. Phys. Chem. Lett., 2017,8(14):3173-3177. doi: 10.1021/acs.jpclett.7b01381

    38. [38]

      Jong U G, Yu C J, Kye Y H, Choe Y G, Hao W, Li S Z. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites[J]. Inorg. Chem., 2019,58(7):4134-4140. doi: 10.1021/acs.inorgchem.8b03095

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

Metrics
  • PDF Downloads(0)
  • Abstract views(123)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return