Citation: Wen YANG, Didi WANG, Ziyi HUANG, Yaping ZHOU, Yanyan FENG. La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276 shu

La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance

  • Corresponding author: Yanyan FENG, feng1988glut@163.com
  • Received Date: 24 July 2023
    Revised Date: 13 November 2023

Figures(8)

  • The Ni-La/Al2O3 catalysts derived from hydrotalcite were prepared by an in-situ growth method and applied in CO2 methanation to investigate the influence of La doping amount on the morphology, structure, and catalytic performance of the catalysts. The morphology and structure of the obtained catalysts were analyzed by inductively-coupled plasma emission spectroscopy, X-ray diffraction, H2 temperature programmed reduction, low-temperature N2 adsorption-desorption, scanning electron microscopy, and transmission electron microscopy, respectively. The characterization results indicated that an appropriate amount of La doping could improve the dispersion of active metal Ni on the support, weaken the interaction between Ni and the support, improve the pore structure of the catalyst, and increase the specific surface area of the catalyst. The results of CO2 methanation showed that the catalyst 30Ni-10La/Al2O3 with the Ni loading (mass fraction) of 30% and La doping of 10% possessed the outstanding catalytic performance, which exhibited the CO2 conversion of 91.9% and CH4 yield of 91.5% under 350℃. Moreover, the catalyst 30Ni-10La/Al2O3 remained highly active after the stability test of 60 h.
  • 加载中
    1. [1]

      SHI Y B, ZHANG G Q, SUN Y C, ZHENG H Y, LI Z, SHANGGUAN J, MI J, LIU S J, SHI P Z. KIT-6 supported CeO2 for catalytic synthesis of dimethyl carbonate from CO2 and methanol[J]. Chinese J. Inorg. Chem., 2021,37(6):1004-1016.  

    2. [2]

      Li Z Y, Wu D, Gong W B, Li J Y, Sang S K, Liu H J, Long R, Xiong Y J. Highly efficient photocatalytic CO2 methanation over Ru-doped TiO2 with tunable oxygen vacancies[J]. Chin. J. Struct. Chem., 2022,41:2212043-2212050.

    3. [3]

      XU B J. Reversible oxidation-reduction process in a palladium-iron intermetallic promotes and stabilizes CO2 methanation[J]. Acta Phys.-Chim. Sin., 2021,37(5)2010066.  

    4. [4]

      Gong J, Li J M, Liu C, Wei F Y, Yin J L, Li W Z, Xiao L, Wang G W, Lu J T, Zhuang L. Guanine-regulated proton transfer enhances CO2-to-CH4 selectivity over copper electrode[J]. Chinese J. Catal., 2022,43(12):3101-3106. doi: 10.1016/S1872-2067(22)64113-5

    5. [5]

      Wang W, Wang S P, Ma X B, Gong J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem. Soc. Rev., 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a

    6. [6]

      Garbarino G, Bellotti D, Riani P, Magistri L, Busca G. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability[J]. Int. J. Hydrogen Energy, 2015,40(30):9171-9182. doi: 10.1016/j.ijhydene.2015.05.059

    7. [7]

      Fan Z G, Sun K H, Rui N, Zhao B R, Liu C J. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition[J]. J. Energy Chem., 2015,24(5):655-659. doi: 10.1016/j.jechem.2015.09.004

    8. [8]

      Swalus C, Jacquemin M, Poleunis C, Bertrand P, Ruiz P. CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: "In situ" supply of hydrogen by Ni/activated carbon catalyst[J]. Appl. Catal. B-Environ., 2012,125:41-50. doi: 10.1016/j.apcatb.2012.05.019

    9. [9]

      Sakpal T, Lefferts L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. J. Catal., 2018,367:171-180. doi: 10.1016/j.jcat.2018.08.027

    10. [10]

      López-Rodríguez S, Davó-Quiñonero A, Bailón-García E, Lozano-Castello D, Bueno-Lopez A. Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation[J]. Mol. Catal., 2021,515111911. doi: 10.1016/j.mcat.2021.111911

    11. [11]

      Ischenko O V, Dyachenko A G, Saldan I, Lisnyak V V, Diyuk V E, Vakaliuk A A, Yatsymyrskyi A V, Gaidai S V, Zakharova T M, Makota O, Ericsson T, Häggström L. Methanation of CO2 on bulk Co-Fe catalysts[J]. Int. J. Hydrogen Energy, 2021,46(76):37860-37871. doi: 10.1016/j.ijhydene.2021.09.034

    12. [12]

      Yin L T, Chen X Y, Sun M H, Zhao B, Chen J J, Zhang Q L, Ning P. Insight into the role of Fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction[J]. Int. J. Hydrogen Energy, 2022,47(11):7139-7149. doi: 10.1016/j.ijhydene.2021.12.057

    13. [13]

      Miao C, Shang K X, Liang L X. Efficient and stable Ni/ZSM-5@MCM-41 catalyst for CO2 methanation[J]. ACS Sustain. Chem. Eng., 2022,10(38):12771-12782. doi: 10.1021/acssuschemeng.2c03693

    14. [14]

      Zhang D Y, Zhang J B, Li R, Chen H Y, Hao Q Q, Bai Y H, Shang J X, Zhang L, Ma X X. Coal char supported Ni catalysts prepared for CO2 methanation by hydrogenation[J]. Int. J. Hydrogen Energy, 2023,48(39):14608-14621. doi: 10.1016/j.ijhydene.2023.01.042

    15. [15]

      Panagiotopoulou P, Kondarides D I, Verykios X E. Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst[J]. Catal. Today, 2012,181(1):138-147. doi: 10.1016/j.cattod.2011.05.030

    16. [16]

      Kirchner J, Anolleck J K, Lösch H, Kureti S. Methanation of CO2 on iron based catalysts[J]. Appl. Catal. B-Environ., 2018,223:47-59. doi: 10.1016/j.apcatb.2017.06.025

    17. [17]

      Gonçalves L P L, Mielby J, Soares O S G P, Sousa J P S, Petrovykh D Y, Lebedev O I, Pereira M F R, Kegnæs S, Koleńko Y V. In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS[J]. Appl. Catal. B-Environ., 2022,312121376. doi: 10.1016/j.apcatb.2022.121376

    18. [18]

      Nagase H, Naito R, Tada S, Kikuchi R, Fujiwara K, Nishijima M, Honma T. Ru nanoparticles supported on amorphous ZrO2 for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(14):4522-4531. doi: 10.1039/D0CY00233J

    19. [19]

      Xu L L, Wang F G, Chen M D, Nie D Y, Lian X B, Lu Z Y, Chen H X, Zhang K, Ge P X. CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity[J]. Int. J. Hydrogen Energy, 2017,42(23):15523-15539. doi: 10.1016/j.ijhydene.2017.05.027

    20. [20]

      Wen X Y, Xu L L, Chen M D, Shi Y Y, Lv C F, Cui Y, Wu X Y, Cheng G, Wu C E, Miao Z C, Wang F G, Hu X. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies[J]. Appl. Catal. B-Environ., 2021,297120486. doi: 10.1016/j.apcatb.2021.120486

    21. [21]

      Aimdate K, Srifa A, Koo-Amornpattana W, Sakdaronnarong C, Klysubun W, Kiatphuengporn S, Assabumrungrat S, Wongsakulphasatch S, Kaveevivitchai W, Sudoh M, Watanabe R, Fukuhara C, Ratchahat S. Natural kaolin-based Ni catalysts for CO2 methanation: On the effect of Ce enhancement and microwave-assisted hydrothermal Synthesis[J]. ACS Omega, 2021,6(21):13779-13794. doi: 10.1021/acsomega.1c01231

    22. [22]

      Hu D C, Gao J J, Ping Y, Jia L H, Gunawan P, Zhong Z Y, Xu G W, Gu F N, Su F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind. Eng. Chem. Res., 2012,51(13):4875-4886. doi: 10.1021/ie300049f

    23. [23]

      Han X X, Yang J Z, Han B Y, Sun W, Zhao C F, Lu Y X, Li Z, Ren J. Density functional theory study of the mechanism of CO methanation on Ni4/t-ZrO2 catalysts: Roles of surface oxygen vacancies and hydroxyl groups[J]. Int. J. Hydrogen Energy, 2017,42(1):177-192. doi: 10.1016/j.ijhydene.2016.11.028

    24. [24]

      Zhao B R, Yao Y J, Shi H F, Yang F, Jia X Z, Liu P, Ma X X. Preparation of Ni/SiO2 catalyst via novel plasma-induced micro-combustion method[J]. Catal. Today, 2019,337:28-36. doi: 10.1016/j.cattod.2019.04.068

    25. [25]

      LI J L, FU N, LÜ G X. Photocatalytic methanation of CO2 over TiO2 nanoribbons[J]. Chinese J. Inorg. Chem., 2010,26(12):2175-2181.  

    26. [26]

      Cui Y, Qiu J, Chen B, Xu L L, Chen M D, Wu C E, Cheng G, Yang B, Wang N, Hu X. CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification[J]. Fuel, 2022,324124679. doi: 10.1016/j.fuel.2022.124679

    27. [27]

      Zhang T F, Ai H M, Liu Q. La2O3-promoted Ni/Al2O3 catalyst for CO methanation: Enhanced catalytic activity and stability[J]. Energy Technol.-Ger., 2019,7(10)1900531. doi: 10.1002/ente.201900531

    28. [28]

      Mihet M, Dan M, Barbu-Tudoran L, Lazar M D. CO2 methanation using multimodal Ni/SiO2 catalysts: Effect of support modification by MgO, CeO2, and La2O3[J]. Catalysts, 2021,11(4)443. doi: 10.3390/catal11040443

    29. [29]

      Shi Z M, Wan C S, Huang M, Pan J H, Luo R Z, Li D L, Jiang L L. Characterization and catalytic behavior of hydrotalcite-derived Ni-Al catalysts for methane decomposition[J]. Int. J. Hydrogen Energy, 2020,45(35):17299-17310. doi: 10.1016/j.ijhydene.2020.04.141

    30. [30]

      Koo K Y, Roh H S, Seo Y T, Seo D J, Yoon W L, Park S B. A highly effective and stable nano-sized Ni/MgO-Al2O3 catalyst for gas to liquids (GTL) process[J]. Int. J. Hydrogen Energy, 2008,33(8):2036-2043. doi: 10.1016/j.ijhydene.2008.02.029

    31. [31]

      Jie L, Li C M, Wang F, He S, Chen H, Zhao Y F, Wei M, Evans D G, Duan X. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catal. Sci. Technol., 2013,3(10):2627-2633. doi: 10.1039/c3cy00355h

    32. [32]

      Chen A, Miyao T, Higashiyama K, Watanabe M. High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation[J]. Catal. Sci. Technol., 2014,4(8):2508-2511. doi: 10.1039/C4CY00461B

    33. [33]

      Michalska K, Kowalik P, Próchniak W, Borowiecki T. The effect of La2O3 on Ni/Al2O3 catalyst for methanation at very low COx/H2 ratio[J]. Catal. Lett., 2018,148(3):972-978. doi: 10.1007/s10562-018-2302-y

    34. [34]

      Le M C, Van K L, Nguyen T H T, Nguyen N H. The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature[J]. J. Chem., 20174361056.

    35. [35]

      Garbarino G, Wang C, Cavattoni T, Finocchio E, Riani P, Flytzani-Stephanopoulos M, Busca G. A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation[J]. Appl. Catal. B-Environ., 2019,248:286-297. doi: 10.1016/j.apcatb.2018.12.063

    36. [36]

      Siakavelas G I, Charisiou N D, Alkhoori S A, Alkhoori A A, Sebastian V, Hinder S J, Baker M A, Yentekakis I V, Polychronopoulou K, Goula M A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction[J]. Appl. Catal. B-Environ., 2021,282119562. doi: 10.1016/j.apcatb.2020.119562

    37. [37]

      Gholami S, Alavi S M, Rezaei M. Preparation of highly active and stable nanostructured Ni-Cr2O3 catalysts for hydrogen purification via CO2 methanation reaction[J]. J. Energy Inst., 2021,95:132-142. doi: 10.1016/j.joei.2021.01.009

    38. [38]

      Ilsemann J, Sonström A, Gesing T, Anwander R, Bäumer M. Highly active Sm2O3-Ni xerogel catalysts for CO2 methanation[J]. ChemCatChem, 2019,11(6):1732-1741. doi: 10.1002/cctc.201802049

    39. [39]

      Gödde J, Merko M, Xia W, Muhler M. Nickel nanoparticles supported on nitrogen-doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst[J]. J. Energy Chem., 2021,54:323-331. doi: 10.1016/j.jechem.2020.06.007

    40. [40]

      Wei L, Haije W, Kumar N, Peltonen J, Peurla M, Grenman H, de Jong W. Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation[J]. Catal. Today, 2021,362:35-46. doi: 10.1016/j.cattod.2020.05.025

    41. [41]

      Ye R P, Liao L, Reina T R, Liu J, Chevella D, Jin Y G, Fan M H, Liu J. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation[J]. Fuel, 2021,285119151. doi: 10.1016/j.fuel.2020.119151

    42. [42]

      Sani L A, Wang C, Zhang M, Bai H, An P, Han Z, Shi L, Wang K, Bai D, Xu G W, Su F B, Zhang Z G. Methanation of CO2 over Yb-promoted Ni/Al2O3 catalysts prepared by solution combustion[J]. Energy Fuels, 2022,36(10):5360-5374. doi: 10.1021/acs.energyfuels.2c00180

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(0)
  • Abstract views(126)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return