Citation: Zhongxuan XU, Jun WU, Yuanting ZHANG, Mengjie WU. Four-connected helical chiral coordination polymers based on lactate synthons: Syntheses, structures, and photo-catalytic properties[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 336-344. doi: 10.11862/CJIC.20230266 shu

Four-connected helical chiral coordination polymers based on lactate synthons: Syntheses, structures, and photo-catalytic properties

  • Corresponding author: Zhongxuan XU, xuzhongxuan4201@163.com
  • Received Date: 12 July 2023
    Revised Date: 14 November 2023

Figures(8)

  • Enantiomeric lactic derivatives and 3-bromo-4-hydroxybenzoate were used as starting materials to obtain a pair of enantiomers 3-bromo-4-(((1R)-1-carboxyethyl)oxy)benzoic acid (R-H2bba) and 3-bromo-4-(((1S)-1-carboxy-ethyl)oxy)benzoic acid (S-H2bba). As new synthons, R-H2bba and S-H2bba can provide variable coordination modes by two carboxylate groups and chiral source by lactate unit. In the presence of 1, 3-di(pyridine-4-yl)propane (1, 3-dpp), R-H2bba and S-H2bba further assembled with Ni2+ ions under the hydrothermal condition to obtain a pair of chiral coordination polymers (CCPs) {[Ni(R-bba)(1, 3-dpp)(H2O)0.5]·1.5H2O}n (HU12-R) and {[Ni(S-bba) (1, 3-dpp) (H2O)0.5]·1.5H2O}n (HU12-S), respectively. Structural analysis revealed complexes HU12-R and HU12-S are 3D helical frameworks with 4-connected dia net. In complexes HU12-R and HU12-S, R-bba2- and S-bba2- anions are respectively connected by Ni2+ centers to form a pair of small enantiomeric helical chains around 21 screw axis. In contrast, 1, 3-dpp ligands and Ni2+ centers construct another pair of large enantiomeric helical chains around 41 or 43 screw axis, respectively. Moreover, the results of electrochemical testing indicated that complex HU12-R is an n-type semiconductor and has a strong absorbing ability for UV-Vis light and low resistance in charge transportation. By comparing with R-H2bba, 1, 3-dpp, and Ni2+ ions, HU12-R indicates obvious catalytic activity in the degradation of dyes under ultraviolet light.
  • 加载中
    1. [1]

      Mason S F. Origins of biomolecular handedness[J]. Nature, 1984,311:19-23. doi: 10.1038/311019a0

    2. [2]

      Gingras M. One hundred years of helicene chemistryy. Part 1: Non-stereoselective syntheses of carbohelicenes[J]. Chem. Soc. Rev., 2013,42:968-1006. doi: 10.1039/C2CS35154D

    3. [3]

      Watson J D, Crick F H C. A structure for deoxyribose nucleic acid[J]. Nature, 1953,171:737-738. doi: 10.1038/171737a0

    4. [4]

      Goodman C. A tale of two twists[J]. Nature, 2014,511:12-13. doi: 10.1038/nature13359

    5. [5]

      Sahoo D, Imam M R, Peterca M, Partridge B E, Wilson D A, Zeng X, Ungar G, Heiney P A, Percec V. Hierarchical self-organization of chiral columns from chiral supramolecular spheres[J]. J. Am. Chem. Soc., 2018,140:13478-13487. doi: 10.1021/jacs.8b09174

    6. [6]

      Vacogne C D, Wei C, Tauer K, Schlaad H. Self-assembly of α-helical polypeptides into microscopic and enantiomorphic spirals[J]. J. Am. Chem. Soc., 2018,140:11387-11394. doi: 10.1021/jacs.8b06503

    7. [7]

      Lee S, Kim H, Tsai E, Richardson J M, Korblova E, Walba D M, Clark N A, Lee S B, Yoon D K. Multidimensional helical nanostructures in multiscale nanochannels[J]. Langmuir, 2015,31:8156-8161. doi: 10.1021/acs.langmuir.5b01620

    8. [8]

      Xu Z X, Fu H R, Wu X, Kang Y, Zhang J. Size-dependent enantioselective adsorption of racemic molecules through homochiral metal-organic frameworks embedding helicity[J]. Chem.-Eur. J., 2015,21:10236-10240. doi: 10.1002/chem.201500615

    9. [9]

      Dong J Q, Liu Y, Cui Y. Supramolecular chirality in metal-organic complexes[J]. Acc. Chem. Res., 2021,54:194-206. doi: 10.1021/acs.accounts.0c00604

    10. [10]

      Zavakhina M S, Samsonenko D G, Dybtsev D N, Fedin V P. Chiral MOF incorporating chiral guests: Structural studies and enantiomer-dependent luminescent properties[J]. Polyhedron, 2019,162:311-315. doi: 10.1016/j.poly.2019.02.008

    11. [11]

      Li X Z, Wu J G, He C, Meng Q T, Duan C Y. Asymmetric catalysis within the chiral confined space of metal-organic architectures[J]. Small, 2019,151804770. doi: 10.1002/smll.201804770

    12. [12]

      Tan C X, Han X, Li Z J, Liu Y, Cui Y. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal-organic framework[J]. J. Am. Chem. Soc., 2018,140:16229-16236. doi: 10.1021/jacs.8b09606

    13. [13]

      Zhao Y W, Guo L E, Zhang F Q, Yao J, Zhang X M. Turn-on fluorescence enantioselective sensing of hydroxyl carboxylic enantiomers by metal-organic framework nanosheets with a homochiral tetracarboxylate of cyclohexane diamide[J]. ACS Appl. Mater. Interfaces, 2021,13:20821-20829. doi: 10.1021/acsami.1c02897

    14. [14]

      Zhang Y, Jin X N, Ma X F, Wang Y. Chiral porous organic frameworks and their application in enantioseparation[J]. Anal. Methods, 2021,13:8-33. doi: 10.1039/D0AY01831G

    15. [15]

      XU Z X, LI L F, BAI X L, XU S F. Enantiomeric helical frameworks with dia net based on rigid ligands from spontaneous resolution[J]. Chinese J. Inorg. Chem., 2021,37(7):1191-1196.  

    16. [16]

      Li Y P, Wang X X, Li S N, Sun H M, Jiang Y C, Hu M C, Zhai Q G. The power of heterometalation through lithium for helix chain-based noncentrosymmetric metal-organic frameworks with tunable second-harmonic generation effects[J]. Cryst. Growth Des., 2017,17:5634-5639. doi: 10.1021/acs.cgd.7b01320

    17. [17]

      Zhang S Y, Li D, Guo D, Zhang H, Shi W, Cheng P, Wojtas L, Zaworotko M J. Synthesis of a chiral crystal form of MOF-5, CMOF-5, by chiral induction[J]. J. Am. Chem. Soc., 2015,137:15406-15409. doi: 10.1021/jacs.5b11150

    18. [18]

      Mao Y M, Dong X H, Deng Y D, Li J, Huang L, Zeng H M, Zou G H, Lin Z E. Amino acid-templated zinc phosphites: Low-dimensional structures, fluorescence, and nonlinear optical properties[J]. Dalton Trans., 2021,50:5442-5445. doi: 10.1039/D1DT00939G

    19. [19]

      Xie S M, Fu N, Li L, Yuan B Y, Zhang J H, Li Y X, Yuan L M. Homochiral metal-organic cage for gas chromatographic separations[J]. Anal. Chem., 2018,90:9182-9188. doi: 10.1021/acs.analchem.8b01670

    20. [20]

      Tang H T, Yang K K, Wang K Y, Meng Q, Wu F, Fang Y, Wu X, Li Y G, Zhang W C, Luo Y F, Zhu C F, Zhou H C. Engineering a homochiral metal-organic framework based on an amino acid for enantioselective separation[J]. Chem. Commun., 2020,56:9016-9019. doi: 10.1039/D0CC00897D

    21. [21]

      Jia J G, Feng J S, Huang X D, Bao S S, Zheng L M. Homochiral iron(Ⅱ)-based metal-organic nanotubes: Metamagnetism and selective nitric oxide adsorption in a confined channel[J]. Chem. Commun., 2019,55:2825-2828. doi: 10.1039/C9CC00506D

    22. [22]

      Wu X, Zhang H B, Xu Z X, Zhang J. Asymmetric induction in homochiral MOFs: From interweaving double helices to single helices[J]. Chem. Commun., 2015,51:16331-16333. doi: 10.1039/C5CC06501A

    23. [23]

      Burneo I, Stylianou K C, Imaz I, Maspoch D. The influence of the enantiomeric ratio of an organic ligand on the structure and chirality of metal-organic frameworks[J]. Chem. Commun., 2014,50:13829-13832. doi: 10.1039/C4CC06190J

    24. [24]

      Bisht K K, Parmar B, Rachuri Y, Kathalikattilad A C, Suresh E. Progress in the synthetic and functional aspects of chiral metal-organic frameworks[J]. CrystEngComm, 2015,17:5341-5356. doi: 10.1039/C5CE00776C

    25. [25]

      Ma Y L, Meng Q, Xu Z X. Semi-conductive helical homochiral metal-organic frameworks based on enantiomeric proline derivatives[J]. CrystEngComm, 2020,22:3215-3220. doi: 10.1039/D0CE00262C

    26. [26]

      Gu Z G, Zhang C H, Zhang J, Bu X H. Chiral chemistry of metal-camphorate frameworks[J]. Chem. Soc. Rev., 2016,45:3122-3144. doi: 10.1039/C6CS00051G

    27. [27]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    28. [28]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    29. [29]

      Parmar B, Bisht K K, Rajput G, Suresh E. Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules[J]. Dalton Trans., 2021,50:3083-3108. doi: 10.1039/D0DT03824E

  • 加载中
    1. [1]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(1)
  • Abstract views(346)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return