Citation: Yuanchao LI, Weifeng HUANG, Pengchao LIANG, Zifang ZHAO, Baoyan XING, Dongliang YAN, Li YANG, Songlin WANG. Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252 shu

Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites

Figures(10)

  • LiMn0.8Fe0.2PO4/C composite was synthesized using sucrose and graphite as heterogeneous carbon sources through a solid-state method assisted by aqueous rheological phase. The effect of different addition methods of graphite on electrochemical performances was studied. The LiMn0.8Fe0.2PO4/C composite was characterized by the X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that different graphite coating processes had obvious effects on the structure and electrochemical properties of the materials. The sample, which the graphite was added after the precursor was calcined, showed a high purity and uniform elliptic morphology. And its specific discharge capacity was 149 mAh·g-1 (87% of the theoretical specific capacity) at 0.1C. The specific discharge capacity was 133 mAh·g-1 at 5C. After 300 cycles at 2C, its capacity was maintained at 127 mAh·g-1, whose decay rate was 1.9%, showing excellent electrochemical performances.
  • 加载中
    1. [1]

      Shi J J, Wang Z G, Fu Y Q. Density functional theory study of lithium diffusion at the interface between olivine-type LiFePO4 and LiMnPO4[J]. J. Phys. D-Appl. Phys., 2016,49(50):505601-505606. doi: 10.1088/0022-3727/49/50/505601

    2. [2]

      Gnewuch S, Rodriguez E E. Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines[J]. Inorg. Chem., 2020,59(9):5883-5895. doi: 10.1021/acs.inorgchem.9b03545

    3. [3]

      SHANG W L, KONG L Y, CHEN L Z, HUANG S Z, TANG Y, REN C. Preparation and electrochemical performance of LiMn0.6Fe0.4PO4/C with high energy density[J]. Chinese J. Inorg. Chem., 2019,35(3):485-492.  

    4. [4]

      WU X Y, RUAN D S, MAO L L, FENG M H, LI B. Mn doped LiFePO4 cathode material: Solvothermal preparation and electrochemical performance[J]. Chinese J. Inorg. Chem., 2021,37(8):1399-1406.  

    5. [5]

      Budumuru A K, Viji M, Jena A, Nanda B R K, Sudakar C. Mn substitution controlled Li-diffusion in single crystalline nanotubular LiFePO4 high rate-capability cathodes: Experimental and theoretical studies[J]. J. Power Sources, 2018,406:50-62. doi: 10.1016/j.jpowsour.2018.10.020

    6. [6]

      Wang C, Li S H, Han Y Y, Lu Z D. Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017,9(33):27618-27624. doi: 10.1021/acsami.7b05868

    7. [7]

      Lei Z H, Wang J L, Yang J, Nuli Y N, Ma Z F. Nano-/microhierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery[J]. ACS Appl. Mater. Interfaces, 2018,10(50):43552-43560. doi: 10.1021/acsami.7b04193

    8. [8]

      Xie Y, Yu H T, Yi T F, Zhu Y R. Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M=Fe, Mn) as cathode materials for rechargeable lithium batteries from first principles[J]. ACS Appl. Mater. Interfaces, 2014,6(6):4033-4042. doi: 10.1021/am4054833

    9. [9]

      Kellerman D, Medvedeva N, Mukhina N, Semenova A, Baklanova I, Perelyaeva L, Gorshkov V. Vanadium doping of LiMnPO4: Vibrational spectroscopy and first-principle studies[J]. Chem. Phys. Lett., 2014,591:21-24. doi: 10.1016/j.cplett.2013.10.087

    10. [10]

      Li Z F, Ren X, Zheng Y, Tian W C, An L W, Sun J C, Ding R Q, Wen L Z, Liang G C. Effect of Ti doping on LiFePO4/C cathode material with enhanced low-temperature electrochemical performance[J]. Ionics, 2020,26(4):1599-1609. doi: 10.1007/s11581-019-03408-4

    11. [11]

      Jung Y H, Park W B, Pyo M, Sohn K S, Ahn D. A multi-element doping design for a high-performance LiMnPO4 cathode via metaheuristic computation[J]. J. Mater. Chem. A, 2017,5(19):8939-8945. doi: 10.1039/C6TA10228J

    12. [12]

      Wu K P, Yin S, Wang S, Zhu J L, Yao W T. Construction of submicron-sized LiFe0.4Mn0.6PO4/C enwrapped into graphene framework for advanced Li-storage[J]. Carbon, 2020,169:55-64. doi: 10.1016/j.carbon.2020.07.030

    13. [13]

      Zhang J, Luo S H, Ren Q X, Zhang D J, Qin Y. Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery[J]. Appl. Surf. Sci., 2020,530146628. doi: 10.1016/j.apsusc.2020.146628

    14. [14]

      Xu G, Yang Y R, Li L L, Li F, Wang J W, Bao L, Li X, Shen G, Han G R. Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes[J]. CrystEngComm, 2016,18(18):3282-3288. doi: 10.1039/C6CE00336B

    15. [15]

      Xu H, Zong J, Ding F, Lu Z W, Li W, Liu X J. Effects of Fe2+ ion doping on LiMnPO4 nanomaterial for lithium ion batteries[J]. RSC Adv., 2016,6(32):27164-27169. doi: 10.1039/C6RA02977A

    16. [16]

      Deng Y F, Yang C X, Zou K X, Qin X S, Zhao Z X, Chen G H. Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5=y<1.0) cathode materials for high energy density lithium ion batteries. Adv[J]. Energy Mater., 2017,7(13)1601958. doi: 10.1002/aenm.201601958

    17. [17]

      Kim T H, Park H S, Lee M H, Lee S Y, Song H K. Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed[J]. J. Power Sources, 2012,210:1-6. doi: 10.1016/j.jpowsour.2012.02.078

    18. [18]

      Guo H, Wu C Y, Xie J, Zhang S C, Cao G S, Zhao X B. Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process[J]. J. Mater. Chem. A, 2014,2(27):10581-10588. doi: 10.1039/C4TA01365D

    19. [19]

      Wang Y, Wu C Y, Yang H, Duh J G. Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials[J]. J. Mater. Chem. A, 2018,6(22):10395-10403. doi: 10.1039/C8TA03418D

    20. [20]

      Yang L T, Xia Y G, Fan X, Qin L F, Qiu B, Liu Z P. Constructing durable carbon layer on LiMn08Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery[J]. Electrochim. Acta, 2016,191:200-206. doi: 10.1016/j.electacta.2016.01.069

    21. [21]

      LUO D D, TIAN J H, ZHU X, WANG Z D, SHAN Z Q. Effect of carbon and graphene on performance of LiMnPO4 material[J]. Chinese J. Inorg. Chem., 2017,33(6):1000-1006.  

    22. [22]

      QIU G C, XIA B B, SUN H D, FANG G Q, LIU W W, LI D C, WEI J. Improvement of electrochemical properties of LiMn2O4 cathode material by LiMnPO4 coating via hydrothermal method[J]. Chinese J. Inorg. Chem., 2013,29(3):437-443.  

    23. [23]

      Li L G, Tu H F, Wang J, Wang M C, Li W F, Li X, Ye F M, Guan Q H, Zhu F Y, Zhang Y P, Hu Y Z, Yan C, Lin H Z, Liu M N. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics[J]. Adv. Funct. Mater., 2023,332212499. doi: 10.1002/adfm.202212499

    24. [24]

      Li Y C, Xing B Y, Wang Z G, Zhang H S, Liu Y Y, Jiang J C, Yang S T, Li B J. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via Co-modification of Li3PO4 and graphite for high-performance lithium-ion batteries[J]. ACS Appl. Energy Mater., 2022,5:10983-10993. doi: 10.1021/acsaem.2c01634

    25. [25]

      Liu C L, Li Q L, Sun H Z, Wang Z, Gong W B, Cong S, Yao Y G, Zhao Z G. MOF-derived vertically stacked Mn2O3@C flakes for fiber-shaped zinc-ion batteries[J]. J. Mater. Chem. A, 2020,8(45):24031-24039. doi: 10.1039/D0TA09212F

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return