Citation: Peng XU, Shasha WANG, Nannan CHEN, Ao WANG, Dongmei YU. Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239 shu

Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water

  • Corresponding author: Peng XU, xupeng@njfu.deu.cn
  • Received Date: 20 June 2023
    Revised Date: 9 January 2024

Figures(10)

  • A magnetic composite material (Fe3O4@PAA@ZIF-8) was designed and synthesized with magnetic nanoparticles as the nucleus, polymer as the intermediate layer, and zeolitic imidazolate framework-8 (ZIF-8) as the outer layer. First, Fe3O4 nanoparticles were prepared by solvothermal method, and then polyacrylic acid (PAA) layer was coated on the surface of Fe3O4 nanoparticles by distillation precipitation polymerization, and finally ZIF-8 was coated on the surface of the Fe3O4@PAA by in-situ deposition method (composite method). Based on the characterization of the composition, structure and morphology of Fe3O4@PAA@ZIF-8, the adsorption properties of malachite green (MG) were studied in depth. Transmission electron microscope (TEM) showed that Fe3O4@PAA@ZIF-8 had a distinct three-layer structure, with an average particle size of 117 nm for Fe3O4, a thickness of about 17 nm for the PAA layer, and a thickness of about 14 nm for the ZIF-8 layer. The adsorption capacity of Fe3O4@PAA@ZIF-8 for MG increased with the increase of pH, and the adsorption process conformed to the quasi-second-order kinetic model and the Langmuir isothermal model, and the maximum adsorption capacity could reach 9 759 mg·g-1. In addition, Fe3O4@PAA@ZIF-8 had good reusability, and the maximum adsorption capacity of MG (500 mg·L-1) could still reach 982 mg·g-1 after 8 cycles.
  • 加载中
    1. [1]

      Hong D H, Shim H S, Ha J. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing[J]. Bull. Korean Chem. Soc., 2021,42(7):956-969. doi: 10.1002/bkcs.12335

    2. [2]

      Li J, Wang H, Yuan X Z, Zhang J J, Chew J W. Metal-organic framework membranes for wastewater treatment and water regeneration[J]. Coord. Chem. Rev., 2020,404213116. doi: 10.1016/j.ccr.2019.213116

    3. [3]

      Wang T, Chen S Q, Chen K J. Metal-organic framework composites and their derivatives as efficient electrodes for energy storage applications: Recent progress and future perspectives[J]. Chem. Rec., 2023e202300006.

    4. [4]

      Ghosh A, Das G. Green synthesis of Sn(Ⅱ)-BDC MOF: Preferential and efficient adsorption of anionic dyes[J]. Microporous Mesoporous Mat., 2020,297110039. doi: 10.1016/j.micromeso.2020.110039

    5. [5]

      Nguyen K D, Ho P H, Vu P D, Pham L D, Trens P, Renzo F D, Phan N T S, Le H V. Efficient removal of chromium(Ⅵ) anionic species and dye anions from water using MOF-808 materials synthesized with the assistance of formic acid[J]. Nanomaterials, 2021,11(6)1398. doi: 10.3390/nano11061398

    6. [6]

      Zhang H F, Zhao M, Lin Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous Mesoporous Mater., 2019,279:201-210. doi: 10.1016/j.micromeso.2018.12.035

    7. [7]

      Hou X T, Sun J X, Lian M Y, Peng Y, Jiang D W, Xu M J, Li B, Xu Q. Emerging synthetic methods and applications of MOF-based gels in supercapacitors, water treatment, catalysis, adsorption, and energy storage[J]. Macromol. Mater. Eng., 2023,308(2)2200469. doi: 10.1002/mame.202200469

    8. [8]

      Tajuddin M H A, Jaafar J, Hasbullah H, Awang N, Ismail A F, Othman M H D, Rahman M A, Yusof N, Aziz F, Salleh W N W. Metal organic framework in membrane separation for wastewater treatment: Potential and way forward[J]. Arab. J. Sci. Eng., 2021,46:6109-6130. doi: 10.1007/s13369-021-05509-7

    9. [9]

      Behrens S, Appel I. Magnetic nanocomposites[J]. Curr. Opin. Biotechnol., 2016,39:89-96. doi: 10.1016/j.copbio.2016.02.005

    10. [10]

      Sharma A, Mangla D, Shehnaz , Chaudhry S A. Recent advances in magnetic composites as adsorbents for wastewater remediation[J]. J. Environ. Manage., 2022,306114483. doi: 10.1016/j.jenvman.2022.114483

    11. [11]

      Khan M A M, Khan W, Ahamed M, Alhazaa A N. Investigation on the structure and physical properties of Fe3O4/RGO nanocomposites and their photocatalytic application[J]. Mat. Sci. Semicon. Proc., 2019,99:44-53. doi: 10.1016/j.mssp.2019.04.005

    12. [12]

      Liu L H, Liu J Y, Zhao L, Yang Z C, Lv C Q, Xue J R, Tang A P. Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions[J]. Environ. Sci. Pollut. Res. Int., 2019,26:8721-8736. doi: 10.1007/s11356-019-04352-6

    13. [13]

      Rossatto D L, Netto M S, Jahn S L, Mallmann E S, Dotto G L, Foletto E L J. Highly efficient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye[J]. J. Environ. Chem. Eng., 2020,8(3)103804. doi: 10.1016/j.jece.2020.103804

    14. [14]

      Hussain Z, Chang N, Sun J Q, Xiang S M, Ayaz T, Zhang H, Wang H T. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. J. Hazard. Mater., 2022,422126778. doi: 10.1016/j.jhazmat.2021.126778

    15. [15]

      Wang X H, Jiang C L, Hou B X, Wang Y Y, Hao C, Wu J B. Carbon composite lignin‑based adsorbents for the adsorption of dyes[J]. Chemosphere, 2018,206:587-596. doi: 10.1016/j.chemosphere.2018.04.183

    16. [16]

      Lu L, Na C Z. Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution[J]. Philos. Mag. Lett., 2022,102(7):239-253. doi: 10.1080/09500839.2022.2084571

    17. [17]

      Yu J, Xu D Y, Jiang D B, Xu C H. Adsorption mechanism of methylene blue from water using core-shell structured magnetic Mn0.6Zn0.4Fe2O4@SiO2 as efficient recyclable adsorbent[J]. Mater. Chem. Phys., 2021,273125061. doi: 10.1016/j.matchemphys.2021.125061

    18. [18]

      Guo X, Wang J L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm[J]. J. Mol. Liq., 2019,296111850. doi: 10.1016/j.molliq.2019.111850

    19. [19]

      Tran H N, Lima E C, Juang R S, Bollinger J C, Chao H P. Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study[J]. J. Environ. Chem. Eng., 2021,9(6)106674. doi: 10.1016/j.jece.2021.106674

    20. [20]

      Prakash P, Kumar J A, Dhandapani B, Vishnu D, Sree S H, Madhumeena S, Lavanya Y, Inbathamizh L. Utilization of eutrophicated Lemna minor for biosorption of acid blue dye[J]. Biomass Convers. Biorefin., 2021:1-13.

    21. [21]

      Chen L, Dai Y M, Lu Q, Fang C Q, Wang Z H, Li Y Q, Cai L, Liu B, Zhang Y F, Li Y, Wan L. Fabrication of magnetic targeted cellulose/poly (acrylic acid-co-2-methacryloyloxyethyl trimethylammonium chloride) composites for adsorbing Congo red dye from aqueous solution[J]. J. Mater. Sci.-Mater. Electron., 2022,33(8):5750-5762. doi: 10.1007/s10854-022-07760-6

    22. [22]

      Zheng K, Di M Y, Zhang J B, Bao W H, Liang D X, Pang G S, Fang Z X, Li C Y. Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange[J]. Chem. Res. Chin. Univ., 2017,33(4):648-654. doi: 10.1007/s40242-017-6493-3

    23. [23]

      Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Synthesis of dual temperature-and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior[J]. Colloids Surf. B-Biointerfaces, 2018,165:1-8. doi: 10.1016/j.colsurfb.2018.02.010

    24. [24]

      Zhou L, Li N, Owens G, Chen Z L. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8[J]. Chem. Eng. J., 2019,362:628-637. doi: 10.1016/j.cej.2019.01.068

    25. [25]

      Esfahanian M, Ghasemzadeh M A, Razavian S M H. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity[J]. Artif. Cell. Nanomed. Biotechnol., 2019,47(1):2024-2030. doi: 10.1080/21691401.2019.1617729

    26. [26]

      Liu Y X, Wang S, Lu Y P, Zhao Y, Zhang Y S, Xu G H, Zhang J L, Fang Z L, Xu W Y, Chen X. Loading control of metal-organic frameworks in Fe3O4@MOFs series composite adsorbents for optimizing dye adsorption[J]. Ind. Eng. Chem. Res., 2019,58(49):22244-22249. doi: 10.1021/acs.iecr.9b03501

    27. [27]

      Liu Z G, Wang Y, Deng R, Yang L Y, Yu S H, Xu S P, Xu W Q. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): From sample pretreatment to detection all-in-one[J]. ACS Appl. Mater. Interfaces, 2016,8(22):14160-14168. doi: 10.1021/acsami.6b02944

    28. [28]

      Zhou Y G, Liu J, Yang F, Li Q S, Xing G Z. Preparation and characterization of PVA/P(AA‑AM) super absorbent polymer[J]. Integr. Ferroelectr., 2017,179(1):166-172. doi: 10.1080/10584587.2017.1331419

    29. [29]

      Dorina C, Cornelia I, Segal E, Cesàro A. The study of non-isothermal degradation of acrylic ion-exchange resins[J]. J. Therm. Anal. Calorim., 2005,82(3):803-811. doi: 10.1007/s10973-005-0967-0

    30. [30]

      Maryam E, Mohammad A G, Seyyed M H R. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity[J]. Artif. Cell. Nanomed. Biotechnol., 2019,47(1):2024-2030. doi: 10.1080/21691401.2019.1617729

    31. [31]

      Beata G, Sylwia Ż, Sylwia C, Karolina K, Artur B, Bożena T. Thermoanalytical tests (TG-DTG-DSC, Py-GC/MS) of foundry binders on the example of polymer composition of poly (acrylic acid)-sodium carboxymethylcellulose[J]. J. Therm. Anal. Calorim., 2019,138(6):4427-4436. doi: 10.1007/s10973-019-08883-5

    32. [32]

      Song X, Mo J Q, Fang Y T, Luo S M, Xu J J, Wang X. Synthesis of magnetic nanocomposite Fe3O4@ZIF-8@ZIF-67 and removal of tetracycline in water[J]. Environ. Sci. Pollut. Res., 2022,29(23):35204-35216. doi: 10.1007/s11356-021-18042-9

    33. [33]

      Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl. Chem., 2015,87(9/10):1051-1069.

    34. [34]

      Zadvarzi S B, Khavarpour M, Vahdat S M, Baghbanian S M, Rad A S. Synthesis of Fe3O4@chitosan@ZIF-8 towards removal of malachite green from aqueous solution: Theoretical and experimental studies[J]. Int. J. Biol. Macromol., 2021,168:428-441. doi: 10.1016/j.ijbiomac.2020.12.067

    35. [35]

      Seema J, Garg V K, Kataria N, Kadirvelu K. Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater[J]. Chemosphere, 2019,572:160-169.

    36. [36]

      Wang Q Q, Lei L L, Wang F C, Chen C T, Kang X Y, Wang C, Zhao J H, Yang Q X, Chen Z J. Preparation of egg white@zeolitic imidazolate framework-8@polyacrylic acid aerogel and its adsorption properties for organic dyes[J]. J. Solid State Chem., 2020,292121656. doi: 10.1016/j.jssc.2020.121656

    37. [37]

      Saber B Z, Maryam K, Seyed M V, Seyed M B, Ali S R. Synthesis of Fe3O4@chitosan@ZIF-8 towards removal of malachite green from aqueous solution: Theoretical and experimental studies[J]. Int. J. Biol. Macromol., 2021,168:428-441. doi: 10.1016/j.ijbiomac.2020.12.067

    38. [38]

      Seyed A S, Abdol M G, Mohammad P, Mohammad M B, Azam V, Mohammad A. Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1, 1'-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasound-assisted removal of malachite green dye[J]. Appl. Surf. Sci., 2019,467:1204-1212.

    39. [39]

      Pan D Y, Wang L J, Li Z, Geng B J, Zhang C, Zhan J, Yin L Q, Wang L. Synthesis of graphene quantum dotmetal-organic framework nanocomposites as yellow phosphors for white light-emitting diodes[J]. New J. Chem., 2018,2(7):5083-5089.

    40. [40]

      Fatemeh S G, Mohsen T, Ali T, Bagher H, Niyaz M M, Saeed P. Clean synthesis of rock candy-like metal-organic framework biocomposite for toxic contaminants remediation[J]. Environ. Technol. Innov., 2021,23101747. doi: 10.1016/j.eti.2021.101747

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

Metrics
  • PDF Downloads(0)
  • Abstract views(119)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return