Citation: Hanmei HUANG, Shiyong WEI, Xiaolong CHEN, Zhongkui XIE, Wenjun XIANG, Rui WANG. Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 361-372. doi: 10.11862/CJIC.20230230 shu

Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation

  • Corresponding author: Rui WANG, wangrui20190819@163.com
  • Received Date: 14 June 2023
    Revised Date: 22 December 2023

Figures(11)

  • In this work, the electronic structure of three ferrites, Fe2O3 (hematite), Fe3O4 (magnetite), and α-FeOOH (goethite), have been calculated with the density functional theory (DFT) under external electric field (E) for investigating the effect of the external electric field on the electronic structure of ferrites. It was found that the external electric field could continue to decrease the band gap by 0.36, 0.12, and 0.34 eV under an E of 0.01 V·nm-1 through signally changing the valance band maximum. When it increased to 0.1 V·nm-1, Fe2O3 would be broken down by the external electronic field, causing a breaking of the Fe—O bond and a delocalization among Fe atoms along the E direction. At the same time, Fe3O4 and α-FeOOH could maintain their crystal with some effect on the localization and energy of the electron. In addition, it showed a degeneration of the valance electron for three ferrites under the external electric field. For Fe2O3, the Hirshfeld charge of the Fe atoms was reduced while improved for the O atoms along with an increase in the external electronic field. Interestingly, the Hirshfeld charge for both Fe atoms with the form charge of +2 and +3 in Fe3O4 was not influenced by the external electronic field. As for α-FeOOH, the unit of FeO6 located on the edge of the chain was more sensitive than that of the body FeO6 in the chain towards the external electronic field. Meanwhile, the H atom of the terminated -OH in α-FeOOH exhibited a disproportionated response on the Hirshfeld charge under the external electronic field. With the spin of electrons in ferrites, increasing the external electronic field would improve the spin of electrons in Fe3O4 while reducing it in α-FeOOH among an E of 0.001-0.1 V·nm-1.
  • 加载中
    1. [1]

      Parkinson G S. Iron oxide surfaces[J]. Surf. Sci. Rep., 2016,71:272-365. doi: 10.1016/j.surfrep.2016.02.001

    2. [2]

      Luo H W, Zeng Y F, He D Q, Pan X L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chem. Eng. J., 2021,407127191. doi: 10.1016/j.cej.2020.127191

    3. [3]

      Zhu M H, Wachs I E. Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review[J]. ACS Catal., 2016,6:722-732. doi: 10.1021/acscatal.5b02594

    4. [4]

      WU S S, MA B K, JIA Q M, WANG Y M, DAI W L, ZHANG S Y. Synthesis and photocatalytic properties of magnetically separated Ni-Zn ferrite-graphene nanocomposite[J]. Chinese J. Inorg. Chem., 2016,32(4):561-566.  

    5. [5]

      Guo S L, Yi W T, Li Z Z. Effect of magnetic nanoparticles on magnetic field homogeneity[J]. Chin. Phys. B, 2023,32050203. doi: 10.1088/1674-1056/acaa26

    6. [6]

      Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications[J]. Accounts Chem. Res., 2015,48:1276-1285. doi: 10.1021/acs.accounts.5b00038

    7. [7]

      Yu M Q, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61e202103824. doi: 10.1002/anie.202103824

    8. [8]

      Weng H, Yang Y, Zhang C, Cheng M, Wang W J, Song B, Luo H Z, Qin D Y, Huang C, Qin F Z, Li K T. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater[J]. Chem. Eng. J., 2023,453139812. doi: 10.1016/j.cej.2022.139812

    9. [9]

      Carraro G, Sugrañez R, Maccato C, Gasparotto A, Barreca D, Sada C, Cruz-Yusta M, Sánchez L. Nanostructured iron(Ⅲ) oxides: From design to gas- and liquid-phase photo-catalytic applications[J]. Thin Solid Films, 2014,564:121-127. doi: 10.1016/j.tsf.2014.05.048

    10. [10]

      Li Z, Sheng J Y, Wang Y, Xu Y M. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. J. Hazard. Mater., 2013,254-255:18-25. doi: 10.1016/j.jhazmat.2013.03.055

    11. [11]

      Kumar Y, Kumar R, Raizada P, Khan A A P, Singh A, Le Q V, Nguyen V H, Selvasembian R, Thakur S, Singh P. Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications[J]. J. Environ. Chem. Eng., 2022,10107427. doi: 10.1016/j.jece.2022.107427

    12. [12]

      Ide Y, Hattori H, Ogo S, Sadakane M, Sano T. Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere[J]. Green Chem., 2012,14:1264-1267. doi: 10.1039/c2gc16594e

    13. [13]

      Johnson J, Bakranov N, Moniruddin M, Iskakov R, Kudaibergenov S, Nuraje N. Spontaneous polarization field-enhanced charge separation for an iron oxide photo-catalyst[J]. New J. Chem., 2017,41:15528-15532. doi: 10.1039/C7NJ03629A

    14. [14]

      Xu T Y, Ji H D, Gu Y, Tong T Y, Xia Y B, Zhang L Z, Zhao D Y. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite[J]. Chem. Eng. J., 2020,388124230. doi: 10.1016/j.cej.2020.124230

    15. [15]

      Maksoud M I A A, Fahim R A, Bedir A G, Osman A I, Abouelela M M, El-Sayyad G S, Abd Elkodous M, Mahmoud A S, Rabee M M, Al-Muhtaseb A H, Rooney D W. Engineering magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: A review[J]. Environ. Chem. Lett., 2022,20:519-562. doi: 10.1007/s10311-021-01351-3

    16. [16]

      ZHANG L Y, WU J J, MENG Y, XIA S J. Direct Z-scheme heterojunction CeO2@NiAl-LDHs for photodegradation of Rhodamine B and photocatalytic hydrogen evolution: Performance and mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.  

    17. [17]

      CHANG F, ZHAO Y J, SHOU Y P, ZHANG L, WANG J N, SHI T T. One-pot preparation of Fe2O3/Fe2TiO5 S-scheme heterojunction photocatalyst for highly efficient degradation of organic pollution[J]. Chinese J. Inorg. Chem., 2022,38(9):1862-1870.

    18. [18]

      Chen C W, Lee M H, Clark S J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology, 2004,15:1837-1843. doi: 10.1088/0957-4484/15/12/025

    19. [19]

      Wang R N, Yang M, Dong G Y, Wang S F, Fu G S, Wang J L. Strain and electric field co-modulation of electronic properties of bilayer boronitrene[J]. J. Phys.-Condes. Matter, 2016,28055302. doi: 10.1088/0953-8984/28/5/055302

    20. [20]

      Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009,459:820-823. doi: 10.1038/nature08105

    21. [21]

      Tsen K T, Kiang J G, Ferry D K, Kochelap V A, Komirenko S M, Kim K W, Morkoc H. Subpicosecond Raman studies of electric-field-induced optical phonon instability in an In0.53Ga0.47As-based semiconductor nanostructure[J]. J. Phys.-Condes. Matter, 2006,18:7961-7974. doi: 10.1088/0953-8984/18/34/009

    22. [22]

      Miah M I. Spin drift and spin diffusion currents in semiconductors[J]. Sci. Technol. Adv. Mater., 2008,9035014. doi: 10.1088/1468-6996/9/3/035014

    23. [23]

      persano Adorno D, Pizzolato N, Spagnolo B. The influence of noise on electron dynamics in semiconductors driven by a periodic electric field[J]. J. Stat. Mech.-Theory Exp., 2009P01039.

    24. [24]

      Yu Y N, Liu J, Yang Y J, Ding J Y, Zhang A J. Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas[J]. Chem. Eng. J., 2021,425131647. doi: 10.1016/j.cej.2021.131647

    25. [25]

      Guimaraes W G, de Lima G F, Duarte H A. Comparative DFT study of the oxy(hydr)oxides of iron and aluminum-structural, electronic and surface properties[J]. Surf. Sci., 2021,708121821. doi: 10.1016/j.susc.2021.121821

    26. [26]

      Hsu L C, Tzou Y M, Ho M S, Sivakumar C, Cho Y L, Li W H, Chiang P N, Teah H Y, Liu Y T. Preferential phosphate sorption and Al substitution on goethite[J]. Environ. Sci.-Nano, 2020,7:3497-3508. doi: 10.1039/C9EN01435G

    27. [27]

      Cornell R M, Schwertmann U. The iron oxides, structure, properties, reactions occurrences, and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003: 12-32

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(282)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return