Citation: Huimin YU, Zhikang WANG, Jie LI, Yinglin SONG, Minghao DU, Jianping LANG. [WS3Cu2] cluster-based supramolecular frame: Assembly, structure, and third-order nonlinear optical response[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 71-78. doi: 10.11862/CJIC.20230228 shu

[WS3Cu2] cluster-based supramolecular frame: Assembly, structure, and third-order nonlinear optical response

Figures(4)

  • Reactions of (Et4N) (Tp*WS3) (A) (Tp* =hydridotris(3, 5 -dimethylpyrazol -1 -yl)borate) and Cu (Ⅰ) salts [Cu(MeCN)4]PF6 with di(pyridin-4-yl)sulfane (L1) or bis(4-(pyridin-4-yl)phenyl)methanone (L2) gave rise to two W/Cu/ S cluster-based supramolecular compounds with the formula of [Tp*WS3Cu2(L1)]2(PF6)2·2MeCN·2CHCl3 (1·2MeCN·2CHCl3) and [Tp*WS3Cu2(L2)(MeCN)]2(PF6)2·4MeCN (2·4MeCN), respectively. Both cluster-based supramolecular compounds were structurally characterized by single -crystal X -ray diffraction, 1H NMR, MS, IR, UV -Vis, and elemental analysis. Single crystal X-ray diffraction demonstrates that both compounds are cationic cluster-based supramolecule frames with similar butterfly-like cores. 1H NMR and high-resolution electrospray ionization mass spectrometry (HRESI -MS) demonstrated their stability in DMF solution. In addition, the Z -scan measurement reveals the third-order nonlinear optical responses of 1·2MeCN·2CHCl3 and 2·4MeCN were enhanced compared to that of their precursor A.
  • 加载中
    1. [1]

      Shi Y, Cai K, Xiao H, Liu Z, Zhou J, Shen D, Qiu Y, Guo Q H, Stern C, Wasielewski M R, Diederich F, Goddard W A, Stoddart J F. Selective extraction of C70 by a tetragonal prismatic porphyrin cage[J]. J. Am. Chem. Soc., 2018,140(42):13835-13842. doi: 10.1021/jacs.8b08555

    2. [2]

      Zhu J L, Zhang D, Ronson T K, Wang W, Xu L, Yang H B, Nitschke J R. A cavity-tailored metal-organic cage entraps gases selectively in solution and the amorphous solid state[J]. Angew. Chem. Int. Ed., 2021,60(21):11789-11792. doi: 10.1002/anie.202102095

    3. [3]

      Yoshizawa M, Tamura M, Fujita M. Diels-Alder in aqueous molecular hosts: Unusual regioselectivity and efficient catalysis[J]. Science, 2006,312(5771):251-254. doi: 10.1126/science.1124985

    4. [4]

      Kaphan D M, Levin M D, Bergman R G, Raymond K N, Toste F D. A supramolecular microenvironment strategy for transition metal catalysis[J]. Science, 2015,350(6265):1235-1238. doi: 10.1126/science.aad3087

    5. [5]

      Jiang X F, Hau F K, Sun Q F, Yu S Y, Yam V W. From Au…Au-coupled cages to the cage-built 2-D Au…Au arrays: Au…Au bonding interaction driven self-assembly and their Ag sensing and photo-switchable behavior[J]. J. Am. Chem. Soc., 2014,136(31):10921-10929. doi: 10.1021/ja502295c

    6. [6]

      Chowdhury A, Mukherjee P S. Electron-rich triphenylamine-based sensors for picric acid detection[J]. J. Organomet. Chem., 2015,80(8):4064-4075.

    7. [7]

      Cook T R, Vajpayee V, Lee M H, Stang P J, Chi K W. Biomedical and biochemical applications of self-assembled metallacycles and metallacages[J]. Acc. Chem. Res., 2013,46(11):2464-2474. doi: 10.1021/ar400010v

    8. [8]

      Ahmad N, Younus H A, Chughtai A H, Verpoort F. Metal-organic molecular cages: Applications of biochemical implications[J]. Chem. Soc. Rev., 2015,44(1):9-25. doi: 10.1039/C4CS00222A

    9. [9]

      Yan X, Cook T R, Wang P, Huang F, Stang P J. Highly emissive platinum (Ⅱ) metallacages[J]. Nat. Chem., 2015,7(4):342-348. doi: 10.1038/nchem.2201

    10. [10]

      Zhang Q W, Li D, Li X, White P B, Mecinovic J, Ma X, Agren H, Nolte R J M, Tian H. Multicolor photoluminescence including white-light emission by a single host-guest complex[J]. J. Am. Chem. Soc., 2016,138(41):13541-13550. doi: 10.1021/jacs.6b04776

    11. [11]

      Mu C, Zhang Z, Hou Y, Liu H, Ma L, Li X, Ling S, He G, Zhang M. Tetraphenylethylene-based multicomponent emissive metallacages as solid-state fluorescent materials[J]. Angew. Chem. Int. Ed., 2021,60(22):12293-12297. doi: 10.1002/anie.202100463

    12. [12]

      Stang P J, Cao D H. Transition metal based cationic molecular boxes. Self-assembly of macrocyclic platinum (Ⅱ) and palladium (Ⅱ) tetra-nuclear complexes[J]. J. Am. Chem. Soc., 1994,116(11):4981-4982. doi: 10.1021/ja00090a051

    13. [13]

      Fujita M, Fujita N, Ogura K, Yamaguchi K. Spontaneous assembly of ten components into two interlocked, identical coordination cages[J]. Nature, 1999,400(6739):52-55. doi: 10.1038/21861

    14. [14]

      Ronson T K, Wang Y, Baldridge K, Siegel J S, Nitschke J R. An S10-symmetric 5-fold interlocked [2] catenane[J]. J. Am. Chem. Soc., 2020,142(23):10267-10272. doi: 10.1021/jacs.0c03349

    15. [15]

      Zhang Z E, Zhang Y F, Zhang Y Z, Li H L, Sun L Y, Wang L J, Han Y F. Construction and hierarchical self-assembly of multifunctional coordination cages with triangular metal-metal-bonded units[J]. J. Am. Chem. Soc., 2023,145(13):7446-7453. doi: 10.1021/jacs.3c00024

    16. [16]

      Wang Y S, Bai S, Wang Y Y, Han Y F. Process-tracing study on the post-assembly modification of poly-NHC-based metallosupramolecular cylinders with tunable aggregation-induced emission[J]. Chem. Commun., 2019,55(91):13689-13692. doi: 10.1039/C9CC07113J

    17. [17]

      Li M, Li Y, Li X, Wang F, Han Y F. An ultralong low-temperature phosphorescent pentagonal-prismatic organometallic cylinder featuring pentaphenylpyrrole-N-heterocyclic carbenes[J]. Chin. J. Chem., 2023,41(12):1431-1436. doi: 10.1002/cjoc.202300026

    18. [18]

      Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K. Self-assembly of ten molecules into nanometre-sized organic host frameworks[J]. Nature, 1995,378(6556):469-471. doi: 10.1038/378469a0

    19. [19]

      Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation[J]. Science, 2010,328(5982):1144-1147. doi: 10.1126/science.1188605

    20. [20]

      Wang H, Wang K, Xu Y, Wang W, Chen S, Hart M, Wojtas L, Zhou L P, Gan L, Yan X, Li Y, Lee J, Ke X S, Wang X Q, Zhang C W, Zhou S, Zhai T, Yang H B, Wang M, He J, Sun Q F, Xu B, Jiao Y, Stang P J, Sessler J L, Li X. Hierarchical self-assembly of nanowires on the surface by metallo-supramolecular truncated cuboctahedra[J]. J. Am. Chem. Soc., 2021,143(15):5826-5835. doi: 10.1021/jacs.1c00625

    21. [21]

      Frank M, Hey J, Balcioglu I, Chen Y S, Stalke D, Suenobu T, Fukuzumi S, Frauendorf H, Clever G H. Assembly and stepwise oxidation of interpenetrated coordination cages based on phenothiazine[J]. Angew. Chem. Int. Ed., 2013,52(38):10102-10106. doi: 10.1002/anie.201302536

    22. [22]

      Frank M, Krause L, Herbst-Irmer R, Stalke D, Clever G H. Narcissistic self-sorting vs. statistic ligand shuffling within a series of phenothiazine-based coordination cages[J]. Dalton Trans., 2014,43(11):4587-4592. doi: 10.1039/C3DT53243G

    23. [23]

      Selby H D, Zheng Z P, Gray T G, Holm R H. Bridged multiclusters derived from the face-capped octahedral[Re6(μ3-Se)8]2+ cluster core[J]. Inorg. Chim. Acta, 2001,312(1/2):205-209.

    24. [24]

      Sudik A C, Millward A R, Ockwig N W, Cote A P, Kim J, Yaghi O M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocu-boidal polyhedra[J]. J. Am. Chem. Soc., 2005,127(19):7110-7118. doi: 10.1021/ja042802q

    25. [25]

      Zheng S T, Zhang J, Li X X, Fang W H, Yang G Y. Cubic polyoxo-metalate-organic molecular cage[J]. J. Am. Chem. Soc., 2010,132(43):15102-15103. doi: 10.1021/ja105986b

    26. [26]

      Shi S, Ji W, Tang S H, Lang J P, Xin X Q. Synthesis and optical limiting capability of cubane-like mixed metal clusters (n-Bu4N)3[MoAg3BrX3S4] (X=Cl and I)[J]. J. Am. Chem. Soc., 1994,116(8):3615-3616. doi: 10.1021/ja00087a064

    27. [27]

      PAN M, SU C Y. Progress of some metal·coordinated supramolecules as nonlinear optical materials[J]. Chemistry, 2007,12:915-921. doi: 10.3969/j.issn.0441-3776.2007.12.005

    28. [28]

      GUANG S Y, YIN S C, XU H Y, SONG Y L. The effect of different π electron conjugation bond structure of molecules on the nonlinear optical properties[J]. Journal of Functional Materials, 2006,2(37):325-329.

    29. [29]

      Gao M Y, Wang K, Sun Y, Li D, Song B Q, Andaloussi Y H, Zaworotko M J, Zhang J, Zhang L. Tetrahedral geometry induction of stable Ag-Ti nanoclusters by flexible trifurcate TiL3 metalloligand[J]. J. Am. Chem. Soc., 2020,142(29):12784-12790. doi: 10.1021/jacs.0c05199

    30. [30]

      Qiu X T, Yao R, Zhou W F, Liu M D, Liu Q, Song Y L, Young D J, Zhang W H, Lang J P. Rectangle and [2] catenane from cluster modular construction[J]. Chem. Commun., 2018,54(33):4168-4171. doi: 10.1039/C8CC01950A

    31. [31]

      Bao S J, Xu Z M, Yu T C, Song Y L, Wang H, Niu Z, Li X P, Abrahams B F, Braunstein P, Lang J P. Flexible vertex engineers the controlled assembly of distorted supramolecular tetrahedral and octahedral cages[J]. Research, 2022(2)9819343.

    32. [32]

      Bao S J, Xu Z M, Ju Y, Song Y L, Wang H, Niu Z, Li X, Braunstein P, Lang J P. The covalent and coordination co-driven assembly of supramolecular octahedral cages with controllable degree of distortion[J]. J. Am. Chem. Soc., 2020,142(31):13356-13361. doi: 10.1021/jacs.0c07014

    33. [33]

      Seino H, Arai Y, Iwata N, Nagao S, Mizobe Y, Hidai M. Preparation of mononuclear tungsten tris (sulfido) and molybdenum sulfido-tetrasulfido complexes with hydridotris (pyrazolyl) borate coligand and conversion of the former into sulfido-bridged bimetallic complex having Pt(μ-S)2 WS core[J]. Inorg. Chem., 2001,40(7):1677-1682. doi: 10.1021/ic0008823

    34. [34]

      Peng P, Li F F, Neti V S, Metta-Magana A J, Echegoyen L. Design, synthesis, and X-ray crystal structure of a fullerene-linked metal-organic framework[J]. Angew. Chem. Int. Ed., 2014,53(1):160-163. doi: 10.1002/anie.201306761

    35. [35]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    36. [36]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    37. [37]

      Spek A L. Single-crystal structure validation with the program PLA-TON[J]. J. Appl. Crystallogr., 2003,36(1):7-13. doi: 10.1107/S0021889802022112

    38. [38]

      QI S W, ZHANG Z B. The Z-scan technique and its application to measurement of nonlinear material[J]. Journal of Dezhou University, 2003,4:27-31.

    39. [39]

      WANG Q Q, ZHAO T Y, XIONG G G, ZHOU Z G, TIAN D C. Z-scan technology and its application[J]. Physics, 1998,9:541-543.

    40. [40]

      Li J, Tan Y, Cao C, Wang Z K, Niu Z, Song Y L, Lang J P. One-dimensional and two-dimensional coordination polymers from cluster modular construction[J]. CrystEngComm, 2021,23(17):3160-3166. doi: 10.1039/D1CE00206F

    41. [41]

      Tan Y, Wang Z K, Lang F F, Yu H M, Cao C, Ni C Y, Wang M Y, Song Y L, Lang J P. Construction of cluster-based supramolecular wire and rectangle[J]. Dalton Trans., 2022,51(16):6358-6365. doi: 10.1039/D2DT00344A

    42. [42]

      Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769. doi: 10.1109/3.53394

    43. [43]

      Ge J F, Lu Y T, Sun R, Zhang J, Xu Q F, Li N J, Song Y L, Lu J M. Third-order nonlinear optical properties of symmetric phenoxazinium chlorides with resonance structures at 532 nm[J]. Dyes Pigment., 2011,91(3):489-494. doi: 10.1016/j.dyepig.2011.04.004

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    20. [20]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

Metrics
  • PDF Downloads(1)
  • Abstract views(341)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return