Citation: Zizheng LU, Wanyi SU, Qin SHI, Honghui PAN, Chuanqi ZHAO, Chengfeng HUANG, Jinguo PENG. Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225 shu

Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation

Figures(10)

  • A simple immersion method was used for surface W doping of BiVO4 photoanode. Ciprofloxacin (CIP) was used as a pharmaceuticals and personal care products (PPCPs) model contaminant to study the surface state behavior of W-BiVO4 photoanode for CIP degradation. The results show that low concentration of W doping has no significant effect on the crystal structure, surface morphology and optical absorption performance of BiVO4 photoanode. However, W doping replaces V5+ on the surface of BiVO4 photoanode, inhibiting the V5+/V4+ reduction process on the surface of BiVO4 photoanode and reducing the surface state acting as recombination centre. It can also introduce more oxygen vacancies and increase the surface state acting as reaction sites. CIP degradation reaction is controlled by surface active sites. Surface W doping can effectively promote the charge transfer for CIP degradation, thereby improving the photoelectrocatalytic degradation performance of BiVO4 photoanode.
  • 加载中
    1. [1]

      TIAN Y J, WU Y S, HUANG T Y, CHEN S Q, ZHANG J G, PANG Y. Occurrence of PPCPs in surface water and sediment in China and influencing factors of interactive migration[J]. Journal of Environmental Engineering Technology, 2023,13(2):585-596.  

    2. [2]

      Yi K X, Wang D B, Yang Q, Li X M, Chen H B, Sun J, An H X, Wang L Q, Deng Y C, Liu J, Zeng G M. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Sci. Total Environ., 2017,605:368-375.

    3. [3]

      Orimolade B O, Koiki B A, Peleyeju G M, Arotiba O A. Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants[J]. Electrochim. Acta, 2019,307:285-292. doi: 10.1016/j.electacta.2019.03.217

    4. [4]

      Deegan A M, Shaik B, Nolan K, Urell K, Oelgemoeller M, Tobin J, Morrissey A. Treatment options for wastewater effluents from pharmaceutical companies[J]. Int. J. Environ. Sci. Technol., 2011,8(3):649-666. doi: 10.1007/BF03326250

    5. [5]

      Tan M, Fu Y J, Zhang K J, Liu Y Q, Zhang C, Hao D, Wang Q, Du H. Visible-light-responsive BiVO4/NH2-MIL-125(Ti) Z-scheme heterojunctions with enhanced photoelectrocatalytic degradation of phenol[J]. J. Alloy. Compd., 2023,936168345. doi: 10.1016/j.jallcom.2022.168345

    6. [6]

      Smilyk V O, Fomanyuk S S, Kolbasov G Y, Rusetskyi I A, Vorobets V S. Electrodeposition, optical and photoelectrochemical properties of BiVO4 and BiVO4/WO3 films[J]. Res. Chem. Intermed., 2019,45(8):4149-4161. doi: 10.1007/s11164-019-03897-y

    7. [7]

      Yang N C, Chen R T, Ni C W, Li D F, Sun Q, Liu L F, Qi Y, Jin S Y, Wang X L, Fan F T, Li C, Zhang F X. Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption[J]. J. Energy Chem., 2022,72(8):326-332.

    8. [8]

      Qin N B, Zhang S F, He J Y, Long F, Wang L L. In situ synthesis of BiVO4/BiOBr microsphere heterojunction with enhanced photocatalytic performance[J]. J. Alloy. Compd., 2022,927166661. doi: 10.1016/j.jallcom.2022.166661

    9. [9]

      Wang S C, Wang X, Liu B Y, Guo Z C, Ostrikov K, Wang L Z, Huang W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting[J]. Nanoscale, 2021,13(43):17989-18009. doi: 10.1039/D1NR05691C

    10. [10]

      Prasad U, Prakash J, Azeredo B, Kannan A. Stoichiometric and non-stoichiometric tungsten doping effect in bismuth vanadate based photoactive material for photoelectrochemical water splitting[J]. Electrochim. Acta, 2019,299:262-272. doi: 10.1016/j.electacta.2019.01.013

    11. [11]

      Zhao X, Hu J, Chen S, Chen Z. An investigation on the roles of W doping in BiVO4 photoanode for solar water splitting[J]. Phys. Chem. Chem. Phys., 2018,20(19):13637-13645. doi: 10.1039/C8CP01316K

    12. [12]

      Zhao L, Wei J D, Li Y T, Han C, Pan L, Liu Z F. Photoelectrochemical performance of W-doped BiVO4 photoanode[J]. J. Mater. Sci.: Mater. Electron., 2019,30(24):21425-21434. doi: 10.1007/s10854-019-02521-4

    13. [13]

      Shi Q, Murcia-Lopez S, Tang P Y, Flox C, Morante J R, Bian Z Y, Wang H, Andreu T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process[J]. ACS Catal., 2018,8(4):3331-3342. doi: 10.1021/acscatal.7b04277

    14. [14]

      Pattengale B, Ludwig J, Huang J. Atomic insight into the W-doping effect on carrier dynamics and photoelectrochemical properties of BiVO4 photoanodes[J]. J. Phys. Chem. C, 2016,120(3):1421-1427. doi: 10.1021/acs.jpcc.5b11451

    15. [15]

      WAN L J, YANG M. Synthesis of BiVO4 photoanode with improved photoelectrochemical performance by W-doping and surface electrochemical pretreatment[J]. Journal of Sichuan University (Natural Science Edition), 2018,55(3):571-578.  

    16. [16]

      WANG J H, WU L, LIU S P. First-principles study fou the effect of Yb doping concentration on the electronic structures and optical properties of ZnO[J]. Journal of Atomic and Molecular Physics, 2023,40(6):169-174.  

    17. [17]

      Yang Y C, Zhao Y, Fan W Q, Shen H, Shi W D. A simple flame strategy for constructing W-doped BiVO4 photoanodes with enhanced photoelectrochemical water splitting[J]. Int. J. Energy Res., 2020,44(13):10821-10831. doi: 10.1002/er.5736

    18. [18]

      Chala S, Wetchakun K, Phanichphant S, Inceesungvorn B, Wetchakun N. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst[J]. J. Alloy. Compd., 2014,597:129-135. doi: 10.1016/j.jallcom.2014.01.130

    19. [19]

      Zhang J, Cui H, Wang B, Li C, Zhai J P, Li Q. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: Synthesis, characterization and photocatalytic application[J]. Chem. Eng. J., 2013,223:737-746. doi: 10.1016/j.cej.2012.12.065

    20. [20]

      Song X Z, Shi Q, Wang H, Liu S L, Tai C, Bian Z Y. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols[J]. Appl. Catal. B-Environ., 2017,203:442-451. doi: 10.1016/j.apcatb.2016.10.036

    21. [21]

      Zeng J, Zhong J B, Li J Z, Xiang Z, Liu X L, Chen J F. Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method[J]. Mater. Sci. Semicond. Process., 2014,27(1):41-46.

    22. [22]

      Zhao X, Hu J, Yao X, Chen S, Chen Z. Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting[J]. ACS Appl. Energy Mater., 2018,1(7):3410-3419. doi: 10.1021/acsaem.8b00559

    23. [23]

      Cho S K, Park H S, Lee H C, Nam K M, Bard A J. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation[J]. J. Phys. Chem. C, 2013,117(44):23048-23056. doi: 10.1021/jp408619u

    24. [24]

      Ding K N, Chen B, Fang Z X, Zhang Y F, Chen Z F. Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: A comprehensive density functional study[J]. Phys. Chem. Chem. Phys., 2014,16(26):13465-13476. doi: 10.1039/c4cp01350f

    25. [25]

      Fang M, Cai Q A, Qin Q, Hong W T, Liu W. Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting[J]. Chem. Eng. J., 2021,421127796. doi: 10.1016/j.cej.2020.127796

    26. [26]

      Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M. Oxygen evolution reaction at the Mo/W-doped bismuth vanadate surface: Assessing the dopant role by DFT calculations[J]. Mol. Catal., 2022,517112036. doi: 10.1016/j.mcat.2021.112036

    27. [27]

      Monllor-Satoca D, Bärtsch M, Fàbrega C, Genç A, Reinhard S, Andreu T, Arbiol J, Niederberger M, Morante J R. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes[J]. Energy Environ. Sci., 2015,8(11):3242-3254. doi: 10.1039/C5EE01679G

    28. [28]

      Trzesniewski B J, Digdaya I A, Nagaki T, Ravishankar S, Herraiz-Cardona I, Vermaas D A, Longo A, Gimenez S, Smith W A. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes[J]. Energy Environ. Sci., 2017,10(6):1517-1529. doi: 10.1039/C6EE03677E

    29. [29]

      Gao Y, Hamann T W. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation[J]. J. Phys. Chem. Lett., 2017,8(12):2700-2704. doi: 10.1021/acs.jpclett.7b00664

    30. [30]

      Hajibabaei H, Schon A R, Hamann T W. Interface control of photoelectrochemical water oxidatio performance with Ni1-xFexOy modified hematite photoanodes[J]. Chem. Mater., 2017,29(16):6674-6683. doi: 10.1021/acs.chemmater.7b01149

    31. [31]

      Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann T W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes[J]. Energy Environ. Sci., 2012,5(6):7626-7636. doi: 10.1039/c2ee21414h

    32. [32]

      Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. Water oxidation at hematite photoelectrodes: The role of surface states[J]. J. Am. Chem. Soc., 2012,134(9):4294-4302. doi: 10.1021/ja210755h

    33. [33]

      Thalluri S M, Rojas R M, Rivera O D, Hernández S, Russo N, Rodil S E. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response[J]. Phys. Chem. Chem. Phys., 2015,17(27):17821-17827. doi: 10.1039/C5CP01561H

    34. [34]

      Chang B Y. Conversion of a constant phase element to an equivalent capacitor[J]. J. Electrochem. Sci. Technol., 2020,11(3):318-321. doi: 10.33961/jecst.2020.00815

    35. [35]

      Talasila G, Sachdev S, Srivastva U, Saxena D, Ramakumar S S V. Modified synthesis of BiVO4 and effect of doping (Mo or W) on its photoelectrochemical performance for water splitting[J]. Energy Rep., 2020,6:1963-1972. doi: 10.1016/j.egyr.2020.07.024

    36. [36]

      Tang P Y, Xie H B, Ros C, Han L J, Biset-Peiró M, He Y, Kramer W, Rodríguez A P, Saucedo E, Galán-Mascarós J R, Andreu T, Morante J R, Arbiol J. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering[J]. Energy Environ. Sci., 2017,10(10):2124-2136. doi: 10.1039/C7EE01475A

    37. [37]

      Yang Y, Zhao S H, Bi F K, Chen J F, Li Y T, Cui L F, Xu J C, Zhang X D. Oxygen-vacancy-induced O2 activation and electron-hole migration enhance photothermal catalytic toluene oxidation[J]. Cell Rep. Phys. Sci., 2022,3(8)101011. doi: 10.1016/j.xcrp.2022.101011

    38. [38]

      Shi L, Liu J D, Gao B, Sillanpää M. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane[J]. Sci. Total Environ., 2021,813:152397-152397.

    39. [39]

      Hu J, Zhao X, Chen W, Su H B, Chen Z. Theoretical insight into the mechanism of photoelectrochemical oxygen evolution reaction on BiVO4 anode with oxygen vacancy[J]. J. Phys. Chem. C, 2017,121(34):18702-18709. doi: 10.1021/acs.jpcc.7b05884

    40. [40]

      Park Y, McDonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chem. Soc. Rev., 2013,42(6):2321-2337. doi: 10.1039/C2CS35260E

    41. [41]

      Ye S S, Chen Y X, Yao X L, Zhang J D. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review[J]. Chemosphere, 2021,273128503. doi: 10.1016/j.chemosphere.2020.128503

    42. [42]

      Zhang L, Shi Q, Guo Y Y, Xu D D, Wang H, Wang L Y, Bian Z Y. Interface optimization by impedance spectroscopy and photoelectrocatalytic degradation of clofibric acid[J]. Electrochim. Acta, 2019,300:242-252. doi: 10.1016/j.electacta.2019.01.103

    43. [43]

      Guo H G, Gao N Y, Chu W H, Li L, Zhang Y J, Gu J S, Gu Y L. Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: Kinetics, parameters, and products[J]. Environ. Sci. Pollut. Res., 2013,20(5):3202-3213. doi: 10.1007/s11356-012-1229-x

    44. [44]

      Yahya M S, Oturan N, El Kacemi K, El Karbane M, Aravindakumar C T, Oturan M A. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: Kinetics and oxidation products[J]. Chemosphere, 2014,117:447-454. doi: 10.1016/j.chemosphere.2014.08.016

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return