Citation: Sheng HUANG, Husheng SHAN, Yulong ZHAO, Tongshun DING, Yifan REN, Xiuquan GU. Preparation of humidity sensors based on CsPbBr3 quantum dots for applications in microcrack detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 383-393. doi: 10.11862/CJIC.20230189 shu

Preparation of humidity sensors based on CsPbBr3 quantum dots for applications in microcrack detection

  • Corresponding author: Xiuquan GU, xqgu@cumt.edu.cn
  • Received Date: 18 May 2023
    Revised Date: 7 December 2023

Figures(10)

  • Perovskite CsPbBr3-Fe quantum dots (QDs) with good dispersion and uniform size were prepared using a simple solution route combined with an acetylacetone iron (AAI) modification technology. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. Then, a resistive humidity sensor was fabricated with the perovskite CsPbBr3-Fe QDs by a spin-coating method. The humidity sensitivity measurement results showed that the device had good linear and rapid response characteristics with a detection range of 10% to 100% relative humidity (RH). At 70% RH, the humid sensor displayed a sensitivity of 1.1, a response time of 38 s, and a recovery time of 38 s, respectively. In addition, we used the finite element method (FEM) to simulate the leakage behavior of pipeline microcracks, and verified the feasibility of using humidity sensors to detect the leakage locations by simulating the distribution of flow velocity and pressure fields under different flow velocities and pressures.
  • 加载中
    1. [1]

      Sadeghi M E, Shahrabi F T, Neshati J. Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline[J]. Eng. Fail. Anal., 2011,18(3):963-970. doi: 10.1016/j.engfailanal.2010.11.014

    2. [2]

      LIU L G, HU H, LIU P, LU W, ZHAO K, ZENG D Z. Failure analysis of N80 oil pipe corrosion perforation in a shale gas well in southern Sichuan[J]. Materials Protection, 2023,56(11):193-198.

    3. [3]

      LI X, FENG D W, YANG Z N, YANG Y, XU Z D. Analysis of corrosion and perforation failure of oil tubing in a production well offshore[J]. Chemical Equipment Technology, 2023,44(5):35-39.

    4. [4]

      Tang Z H, Wang Z R, Lu Y W, Sun P P. Cause analysis and preventive measures of pipeline corrosion and leakage accident in alkylation unit[J]. Eng. Fail Anal., 2021,128105623. doi: 10.1016/j.engfailanal.2021.105623

    5. [5]

      Luo B, Sun Y J, Xu Z M, Chen G, Zhang L, Lu W N, Zhao X M, Yuan H Q. Damage characteristics and mechanism of the 2017 groundwater inrush accident that occurred at Dongyu coalmine in Taiyuan, Shanxi, China[J]. Water, 2021,13(3)368. doi: 10.3390/w13030368

    6. [6]

      YAN J, QI K, SONG W, ZHANG S N, WANG K. Detection and analysis of the height of the development of water conducting fracture zones in the Mudu Chaideng coal mine[J]. China Energy and Environmental Protection, 2023,45(9):272-278.

    7. [7]

      Zhang H, Li H X, Zhou J T, Tong K, Xia R C. A multi-dimensional evaluation of wire breakage in bridge cable based on self-magnetic flux leakage signals[J]. J. Magn. Magn. Mater., 2023,566170321. doi: 10.1016/j.jmmm.2022.170321

    8. [8]

      LI F M, LIU S Q, XU L, ZHANG H D, ZENG X M, CHEN Z H. Longitudinal bending mode conversion slotted circular tube piezoelectric ultrasonic transducer[J]. Sci. Sin.-Phys. Mech. Astron., 2023,11:198-209.

    9. [9]

      Conti F, Madeo F, Boiano A, Tarabini M. Electrical and mechanical data fusion for hydraulic valve leakage diagnosis[J]. Meas. Sci. Technol., 2023,34(4)044011. doi: 10.1088/1361-6501/acb376

    10. [10]

      Han L, Chen J F, Li H B, Liu G S, Leng B, Ahmed A, Zhang Z T. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels[J]. Autom. Constr., 2022,140104345. doi: 10.1016/j.autcon.2022.104345

    11. [11]

      Ahn B, Kim J, Choi B. Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak early detection using acoustic emission[J]. Eng. Fract. Mech., 2019,210:381-392. doi: 10.1016/j.engfracmech.2018.03.010

    12. [12]

      Marković L, Ivanišević A, Matijević J, Chan R S M, Tsoi J K H, Šnjarić D, Gjorgievska E. Micro-CT analysis and leakage of bioceramic retrofillings after ultrasonic and Er: YAG laser cavity preparations: An in vitro study[J]. Lasers Med. Sci., 2023,38(1)145. doi: 10.1007/s10103-023-03809-y

    13. [13]

      YU S G, ZHANG H Y, ZHANG J. Preparation of Cd/ZnO and study on its humidity sensitivity performance[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2020,37(2):137-141.

    14. [14]

      Li R X, Yu J H, Wang S, Shi Y Q, Wang Z J, Wang K, Ni Z H, Yang X Y, Wei Z P, Chen R. Surface modification of all-inorganic halide perovskite nanorods by a microscale hydrophobic zeolite for stable and sensitive laser humidity sensing[J]. Nanoscale, 2020,12(25):13360-13367. doi: 10.1039/D0NR01889A

    15. [15]

      CHEN G D, ZHOU N, MAO H Y, CHEN D P. Research progress in organic polymer MEMS humidity sensors[J]. Micro/nano Electronics and Intelligent Manufacturing, 2021,3(4):47-58.

    16. [16]

      WANG W D, LI J, FAN Y Y, CAO J M, ZHANG Y, HU J. Preparation of CeO2/CuO gas sensor and its gas sensing performance of n- butanol[J]. Micronanoelectronic Technology, 2023,60(10):1626-1631.

    17. [17]

      Ghanizadeh S, Naghshara H, Meshginqalam B. A theoretical analysis of performance enhancement of SPR sensor based on ZnO and BaTiO3 for NH3 detection[J]. Phys. Scr., 2023,98(11)115412. doi: 10.1088/1402-4896/acfad1

    18. [18]

      Zhang M, Wei S H, Ren W, Wu R. Development of high sensitivity humidity sensor based on gray TiO2/SrTiO3 composite[J]. Sensors, 2017,17(6)1310. doi: 10.3390/s17061310

    19. [19]

      Wang P, Wu Y H, Cai B, Ma Q S, Zheng X J, Zhang W H. Solution‐processable perovskite solar cells toward commercialization: Progress and challenges[J]. Adv. Funct. Mater., 2019,29(47)1807661. doi: 10.1002/adfm.201807661

    20. [20]

      Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J. Defect tolerance in methylammonium lead triiodide perovskite[J]. ACS Energy Lett., 2016,1(2):360-366. doi: 10.1021/acsenergylett.6b00196

    21. [21]

      Liu Y, Zheng X P, Fang Y J, Zhou Y, Ni Z Y, Xiao X, Chen S S, Huang J S. Ligand assisted growth of perovskite single crystals with low defect density[J]. Nat. Commun., 2021,12(1)1686. doi: 10.1038/s41467-021-21934-6

    22. [22]

      Zhumekenov A A, Saidaminov M I, Haque M A, Alarousu E, Sarmah S P, Murali B, Dursun I, Miao X, Abdelhady A L, Wu T. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Lett., 2016,1(1):32-37. doi: 10.1021/acsenergylett.6b00002

    23. [23]

      De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015,348(6235):683-686. doi: 10.1126/science.aaa5333

    24. [24]

      Randall C A, Bhalla A S, Shrout T R, Cross L E. Classification and consequences of complex lead perovskite ferroelectrics with regard to b-site cation order[J]. J. Mater. Res., 1990,5(4):829-834. doi: 10.1557/JMR.1990.0829

    25. [25]

      Kim Y H, Kim S, Jo S H, Lee T W. Metal halide perovskites: From crystal formations to light‑emitting‑diode applications[J]. Small Methods, 2018,2(11)1800093. doi: 10.1002/smtd.201800093

    26. [26]

      WU Y J, WU Z L, WANG L, NIAN W Q, HE Y, GUO Y C. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. Opto-Electronic Engineering, 2021,48(3):37-44.

    27. [27]

      Haussonne J M, Desgardin G, Bajolet P H, Raveau B. Barium titanate perovskite sintered with lithium fluoride[J]. J. Am. Ceram. Soc., 1983,66(11):801-807.

    28. [28]

      Hirotsu S, Harada J, Iizumi M, Gesi K. Structural phase transitions in CsPbBr3[J]. J. Phys. Soc. Jap., 1974,37(5):1393-1398.

    29. [29]

      Park Y S, Bae W K, Padilha L A, Pietryga J M, Klimov V I. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy[J]. Nano Lett., 2014,14(2):396-402.

    30. [30]

      Ren A B, Lai H G, Hao X, Tang Z G, Xu H, Jeco B M F Y, Watanabe K, Wu L L, Zhang J Q, Sugiyama M, Wu J, Zhao D W. Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses[J]. Joule, 2020,4(6):1263-1277.

    31. [31]

      Wang H R, Zhang X Y, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y Y, Kershaw S V, Zhang L J, Rogach A L, Yang X Y. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nat. Commun., 2019,10(1)665.

    32. [32]

      Arramel , Pan H, Xie A Z, Hou S Y, Yin X M, Tang C S, Hoa N T, Birowosuto M D, Wang H, Dang C, Rusydi A, Wee A T S, Wu J S. Surface molecular doping of all-inorganic perovskite using zethrenes molecules[J]. Nano Res., 2019,12:77-84.

    33. [33]

      Lee D H, Condrate Sr R A, Lacourse W C. FTIR spectral characterization of thin film coatings of oleic acid on glasses: Coatings on glasses from ethyl alcohol[J]. J. Mater. Sci., 1999,34(1):139-146.

    34. [34]

      Nakamato K. Infrared and Raman spectra of inorganic and coordination compound. 3rd ed. Translated by HUANG D R, WANG R Q. Beijing: Chemical Industry Press, 1986.

    35. [35]

      Wang C X, Yin L W, Zhang L Y, Xiang D, Gao R. Metal oxide gas sensors: Sensitivity and influencing factors[J]. Sensors, 2010,10(3):2088-2106.

    36. [36]

      Kumar M, Kumar A, Abhyankar A C. SnO2 based sensors with improved sensitivity and response-recovery time[J]. Ceram. Int., 2014,40(6):8411-8418.

    37. [37]

      Mainali P, Wagle P, Khatri N, McPherson C, Kalkan K, McIlroy D N. Humidity induced resistive switching and negative differential resistance in α-Fe2O3 porous thin films[J]. Sensor. Actuat. A-Phys., 2023,362114631.

    38. [38]

      Anderson Jr J H, Parks G A. Electrical conductivity of silica gel in the presence of adsorbed water[J]. J. Phys. Chem., 1968,72(10):3662-3668.

    39. [39]

      Agmon N. The grotthuss mechanism[J]. Chem. Phys. Lett., 1995,244(5):456-462.

    40. [40]

      Zhang D Z, Sun Y E, Li P, Zhang Y. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing[J]. ACS Appl. Mater. Interfaces, 2016,8(22):14142-14149.

    41. [41]

      Thürmer S, Seidel R, Eberhardt W, Bradforth S E, Winter B. Ultrafast hybridization screening in Fe3+ aqueous solution[J]. J. Am. Chem. Soc., 2011,133(32):12528-12535.

    42. [42]

      Bentaher H, Ibrahmi A, Hamza E, Hbaieb M, Kantchev G, Maalej A, Arnold W. Finite element simulation of moldboard-soil interaction[J]. Soil Tillage Res., 2013,134:11-16.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(283)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return