Citation: Silu WANG, Fengfeng ZHANG, Cheng ZHANG, Xiao WANG, Long TANG, Erlin YUE, Jijiang WANG, Xiangyang HOU. Design and synthesis of Eu3+/Tb3+-functionalized coordination polymers as visible fluorescent probes for trace monitoring Zr4+, Fe3+, Cr2O72-, HPO42- and identifying fingerprints[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 441-450. doi: 10.11862/CJIC.20230145 shu

Design and synthesis of Eu3+/Tb3+-functionalized coordination polymers as visible fluorescent probes for trace monitoring Zr4+, Fe3+, Cr2O72-, HPO42- and identifying fingerprints

  • Corresponding author: Xiangyang HOU, houxiangyang7@126.com
  • Received Date: 17 April 2023
    Revised Date: 1 November 2023

Figures(5)

  • The isomorphic terbium and europium coordination polymers (CPs) {[Eu(PLIA)1.5(H2O)2] ·H2O}n (1) and {[Tb(PLIA)1.5(H2O)2]·H2O}n (2), where H2PLIA=5-((pyridin-4-yl-methyl)oxy)benzene-1,3-dicarboxylic acid, were synthesized by using aromatic π-conjugated and nitrogen-containing organic linkers. The structure determination, characterization, and fluorescence trace identification of the CPs were studied. The two isomorphic complexes have an ideal 3D frame structure and their chemical stability is enhanced by weak interactions such as ππ packing and hydrogen bonds. The characterization shows that CPs 1 and 2 have good fluorescence deletion properties, crystallinity, thermodynamic stability, and structural integrity, and can be used as fluorescence sensing materials. 1 and 2 have fluorescence recognition ability for Zr4+, Cr2O72- and Fe3+, HPO42- in aqueous solution, respectively, with good selectivity and high sensitivity. The detection limits of these four ions by 1 and 2 were 0.139 μmol·L-1 (1, Zr4+), 0.626 μmol·L-1 (1, Cr2O72-), 0.430 μmol·L-1 (2, Fe3+), 1.36 μmol·L-1 (2, HPO42-), respectively. The fluorescence quenching mechanism of 1 and 2 as probes was investigated in detail. More interestingly, the two complexes have potential fingerprint recognition properties. Their fluorescent fingerprint patterns were clear and coherent, and the details were obvious and could be clearly observed.
  • 加载中
    1. [1]

      Golden H E, Evenson G R, Christensen J R, Lane C R. Dvancing watershed legacy nitrogen modeling to improve global water quality[J]. Environ. Sci. Technol., 2023,57:2691-2697. doi: 10.1021/acs.est.2c06983

    2. [2]

      Melanie W, Melitza C M, Graciela R T, Rodriguez R A, Hernandez M, Fernando L R O, Korak J A. Water quality in Puerto Rico after Hurricane Maria: Challenges associated with water quality assessments and implications for resilience[J]. ACS ES&T Wat., 2023,3:354-365.

    3. [3]

      Zhu S Y, Yan B. A novel sensitive luminescent probe of S2O82- and Fe3+ based on covalent post-functionalization of a zirconium(Ⅳ) metal-organic framework[J]. Dalton Trans., 2018,47:11586-11592. doi: 10.1039/C8DT02051E

    4. [4]

      Wang K, Hu X L, Li X, Su Z M, Zhou E L. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72-[J]. J. Solid State Chem., 2021,298122128. doi: 10.1016/j.jssc.2021.122128

    5. [5]

      Wang X, Han Y, Han X X, Hou X Y, Wang J J, Fu F. Highly selective and sensitive detection of Hg2+, Cr2O72-, and nitrobenzene/2,4-dinitrophenol in water via two fluorescent Cd-CPs[J]. J. Solid State Chem., 2022,315123523. doi: 10.1016/j.jssc.2022.123523

    6. [6]

      Wang X, Li B, Wu Y P, Tsamis A, Yu H G, Liu S, Zhao J, Li Y S, Li D S. Investigation on the component evolution of a tetranuclear nickel-cluster-based metal-organic framework in an electrochemical oxidation reaction[J]. Inorg. Chem., 2020,59:4764-4771. doi: 10.1021/acs.inorgchem.0c00024

    7. [7]

      García-Mesa J, Montoro-Leal P, Maireles-Rivas S, Guerrero M L, Alonso E V. Sensitive determination of mercury by magnetic dispersive solid-phase extraction combined with flow-injection-cold vapour-graphite furnace atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2021,36:892-899. doi: 10.1039/D0JA00516A

    8. [8]

      Perelonia K B S, Benitez K C D, Banicod R J S, Tadifa G C, Cambia F D, Montojo U M. Validation of an analytical method for the determination of cadmium, lead and mercury in fish and fishery resources by graphite furnace and cold vapor atomic absorption spectrometry[J]. Food Control, 2021,130108363. doi: 10.1016/j.foodcont.2021.108363

    9. [9]

      Chen Y J, He M, Chen B B, Hu B. Thiol-grafted magnetic polymer for preconcentration of Cd, Hg, Pb from environmental water followed by inductively coupled plasma mass spectrometry detection[J]. Spectroc. Acta Pt. B-Atom. Spectr., 2021,177106071. doi: 10.1016/j.sab.2021.106071

    10. [10]

      Wei J H, Yi J W, Han M L, Li B, Liu S, Wu Y P, Ma L F, Li D S. A water-stable terbium(Ⅲ)-organic framework as a chemosensor for inorganic ions, nitro-containing compounds and antibiotics in aqueous solutions[J]. Chem. Asian J., 2019,14:3694-3701. doi: 10.1002/asia.201900706

    11. [11]

      Hu R, Zhang X, Chi K N, Yang T, Yang Y H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions[J]. ACS Appl. Mater. Interfaces, 2020,12:30770-30778. doi: 10.1021/acsami.0c06291

    12. [12]

      Wang Y, Ma J X, Zhang Y, Xu N, Wang X L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr(Ⅵ), Fe(Ⅲ) ions, and ascorbic acid[J]. Cryst. Growth Des., 2021,21:4390-4397. doi: 10.1021/acs.cgd.1c00311

    13. [13]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in water and white light: Synthesis, characterization, and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework[J]. Cryst. Growth Des., 2019,19:7217-7229. doi: 10.1021/acs.cgd.9b01098

    14. [14]

      Cai D G, Qiu C Q, Zhu Z H, Zheng T F, Wei W J, Chen J L, Liu S J, Wen H R. Fabrication and DFT calculation of amine-functionalized metal-organic framework as a turn-on fluorescence sensor for Fe3+ and Al3+ ions[J]. Inorg. Chem., 2022,61:14770-14777. doi: 10.1021/acs.inorgchem.2c02195

    15. [15]

      WANG Z W, WU H D, Yaseen M, LIANG A L, LIU H, NING Z A, WANG S, WANG G, QUAN W, WANG H. Two-dimensional coordination polymer[Tb(1,4-bdc)1.5(phen)(H2O)]n: Synthesis, crystal structure and luminescent detection of Fe3+[J]. Chinese J. Inorg. Chem., 2022,38(3):551-558. doi: 10.11862/CJIC.2022.056

    16. [16]

      WANG X Q, MA X H, FENG D D, TANG J, WU D. Synthesis of a water-stable Zn2+-based metal-organic framework for luminescence detecting Fe3+ and 2,6-dichloro-4-nitroaniline[J]. Chinese J. Inorg. Chem., 2022,38(1):137-144. doi: 10.11862/CJIC.2022.015

    17. [17]

      Hakansson K, Coorey R V, Zubarev R A, Talrose V L, Hakansson P J. Low-mass ions observed in plasma desorption mass spectrometry of high explosives[J]. J. Mass Spectrom., 2000,35:337-346. doi: 10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7

    18. [18]

      Qiang R B, Sun W M, Hou K M, Li Z P, Zhang J Y, Ding Y, Wang J Q, Yang S R. Electrochemical trimming of graphene oxide affords graphene quantum dots for Fe3+ detection[J]. ACS Appl. Nano Mater., 2021,4:5220-5229. doi: 10.1021/acsanm.1c00621

    19. [19]

      Benito-Pena E, Urraca J L, Moreno-Bondi M C. Quantitative determination of penicillin V and amoxicillin in feed samples by pressurized liquid extraction and liquid chromatography with ultraviolet detection[J]. J. Pharm. Biomed. Anal., 2009,49:289-294. doi: 10.1016/j.jpba.2008.11.016

    20. [20]

      Miao W N, Liu B, Li H, Zheng S J, Jiao H, Xu L. Fluorescent Eu3+/Tb3+ metal-organic frameworks for ratiometric temperature sensing regulated by ligand energy[J]. Inorg. Chem., 2022,61:14322-14332. doi: 10.1021/acs.inorgchem.2c02025

    21. [21]

      Wang S L, L Q, Zhang C, Wang X, Li S Y, Hou X Y, Tang L, Yue E L, Fu F, Wang J J. Fluorescence sensor based on highly stable Cd(Zn)-coordination polymers for efficient detection of Cr2O72-/Nitrobenzene and recognition mechanism[J]. J. Solid State Chem., 2022,316123492. doi: 10.1016/j.jssc.2022.123492

    22. [22]

      Fan M Y, Sun B, Li X, Pan Q Q, Sun J, Ma P F, Su Z M. Highly fluorescent cadmium based metal organic frameworks for rapid detection of antibiotic residues, Fe3+ and Cr2O72- ions[J]. Inorg. Chem., 2021,60:9148-9156. doi: 10.1021/acs.inorgchem.1c01165

    23. [23]

      Meng Z X, Yang F N, Wang X J, Shan W L, Liu D D, Zhang L Y, Yuan G Z. Trefoil-shaped metal-organic cages as fluorescent chemosensors for multiple detection of Fe3+, Cr2O72-, and antibiotics[J]. Inorg. Chem., 2023,62:1297-1305. doi: 10.1021/acs.inorgchem.2c03639

    24. [24]

      Mukherjee D, Pal A, Pal S C, Saha A, Das M C. A Highly selective MOF-based probe for turn-on luminescent detection of Al3+, Cr3+, and Fe3+ in solution and test paper strips through absorbance caused enhancement mechanism[J]. Inorg. Chem., 2022,61:16952-16962. doi: 10.1021/acs.inorgchem.2c03152

  • 加载中
    1. [1]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    9. [9]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    10. [10]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    13. [13]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    14. [14]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    15. [15]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    16. [16]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    17. [17]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

Metrics
  • PDF Downloads(0)
  • Abstract views(244)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return