Citation: Yongzheng ZHANG, Xu GUO, Xinyue SONG, Xin LI. Advances in non-metallic doping of transition metal electrocatalysts for overall water splitting[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 289-306. doi: 10.11862/CJIC.20230121 shu

Advances in non-metallic doping of transition metal electrocatalysts for overall water splitting

  • Corresponding author: Xin LI, lixin@hit.edu.cn
  • Received Date: 4 April 2023
    Revised Date: 29 December 2023

Figures(8)

  • Transition metal-based materials with relatively low cost and excellent catalytic performance are considered as the most promising candidates to replace noble metal-based electrocatalysts in the field of overall water splitting. However, their wide applications are hindered by the limited active sites and relatively poor electrical conductivity. The doping of non-metallic elements can modulate the electronic structure of the host material and optimize the adsorption energy, thus positively affecting the activity and stability of transition metal-based electrocatalysts and narrowing the performance gap between them and precious metal materials. In this paper, we summarize the recent research on the modification of non-metallic elements in transition metal-based electrocatalytic materials, systematically review the methods of non-metallic element doping (high-temperature calcination, hydrothermal/solvent thermal, plasma treatment and electrodeposition), the doping effects of different non-metallic elements (single non-metallic element doping, multi-nonmetallic element doping and composite doping), and analyze the effects of non-metallic element modification on transition metal-based electrocatalysts from multiple perspectives of physicochemical property changes and electronic structure changes. The effects of non-metallic element modification on transition metal-based materials are analyzed from the perspectives of physicochemical property change and electronic structure change. In the end, the future development direction of non-metallic element doped transition metalbased electrocatalysts is prospected.
  • 加载中
    1. [1]

      Xie X H, Du L, Yan L T, Park S, Qiu Y, Sokolowski J, Wang W, Shao Y Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions[J]. Adv. Funct. Mater., 2022,32(21)2110036. doi: 10.1002/adfm.202110036

    2. [2]

      Yu Z Y, Duan Y, Feng X Y, Yu X X, Gao M R, Yu S H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv. Mater., 2021,33(31)2007100. doi: 10.1002/adma.202007100

    3. [3]

      Ma Y H, Leng D F, Zhang X M, Fu J J, Pi C R, Zheng Y, Gao B, Li X G, Li N, Chu P K, Luo Y S, Huo K F. Enhanced activities in alkaline hydrogen and oxygen evolution reactions on MoS2 electrocatalysts by in-plane sulfur defects coupled with transition metal doping[J]. Small, 2022,18(39)2203173. doi: 10.1002/smll.202203173

    4. [4]

      Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248

    5. [5]

      Anantharaj S, Kundu S, Noda S. "The Fe effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano Energy, 2021,80105514. doi: 10.1016/j.nanoen.2020.105514

    6. [6]

      Fu Q, Han J C, Wang X J, Xu P, Yao T, Zhong J, Zhong W W, Liu S W, Gao T L, Zhang Z H, Xu L L, Song B. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv. Mater., 2021,33(6)1907818. doi: 10.1002/adma.201907818

    7. [7]

      Ding H, Liu H F, Chu W S, Wu C Z, Xie Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction[J]. Chem. Rev., 2021,121(21):13174-13212. doi: 10.1021/acs.chemrev.1c00234

    8. [8]

      Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Adv. Mater., 2019,32(3)1806326.

    9. [9]

      Zhang Y X, Sun L, Zhang L K, Li X W, Gu J L, Si H C, Wu L, Shi Y, Sun C, Zhang Y H. Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage[J]. Compos. Part B: Eng., 2020,182107611. doi: 10.1016/j.compositesb.2019.107611

    10. [10]

      Liu C L, Zhang G, Yu L, Qu J H, Liu H J. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small, 2018,14(22)1800421. doi: 10.1002/smll.201800421

    11. [11]

      Sun H, Min Y X, Yang W J, Lian Y B, Lin L, Feng K, Deng Z, Chen M Z, Zhong J, Xu L, Peng Y. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting[J]. ACS Catal., 2019,9(10):8882-8892. doi: 10.1021/acscatal.9b02264

    12. [12]

      Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355(6321)eaad4998. doi: 10.1126/science.aad4998

    13. [13]

      Zhao S Y, Berry G J, Li W Y, Guan G Q, Yang M N, Li J W, Lai F L, Corà F, Holt K, Brett D J. L., He G J. The role of phosphate group in doped cobalt molybdate: Improved electrocatalytic hydrogen evolution performance[J]. Adv. Sci., 2020,7(12)1903674. doi: 10.1002/advs.201903674

    14. [14]

      Lin J H, Yan Y T, Xu T X, Qu C Q, Li J, Cao J, Feng J C, Qi J L. S doped NiCo2O4 nanosheet arrays by Ar plasma: An efficient and bifunctional electrode for overall water splitting[J]. J. Colloid Interface Sci., 2020,560:34-39. doi: 10.1016/j.jcis.2019.10.056

    15. [15]

      Liu J N, Deng X Y, Zhu S, Zhao N Q, Sha J W, Ma L Y, He F. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor[J]. Electrochim. Acta, 2021,368137528. doi: 10.1016/j.electacta.2020.137528

    16. [16]

      Sun J P, Hu X T, Huang Z D, Huang T X, Wang X K, Guo H L, Dai F N, Sun D F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts[J]. Nano Res., 2020,13(8):2056-2062. doi: 10.1007/s12274-020-2807-8

    17. [17]

      KOU X R, LI C Y, QI Y Y, ZHANG K, LUO J, LIU H L. Advances in the application of transition metal hybrid materials in electrolytic water[J]. Chem. Res., 2022,33(4):290-298.

    18. [18]

      WANG Z Q, LIU W H, GENG F X. Research progress on transition metal layered double hydroxide electrocatalysts[J]. Mater. China, 2017,36(9):659-666.

    19. [19]

      Zhong X, Shu C, Su X M, Wang W K, Gong J Y. Insight into improved oxygen evolution reaction on electronic modulation of phosphorus doped NiCo2O4[J]. Mater. Today Commun., 2022,31103708. doi: 10.1016/j.mtcomm.2022.103708

    20. [20]

      SONG N J, GUO M Y, NAN H X, YU J. Progress of transition metal-based catalysts for oxygen precipitation reactions[J]. Energy Storage Sci. Technol., 2021,10(6):1906-1917.

    21. [21]

      Li S S, Li E Z, An X W, Hao X G, Jiang Z Q, Guan G Q. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives[J]. Nanoscale, 2021,13(3):12788-12817.

    22. [22]

      Ray A, Sultana S, Paramanik L, Parida K M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting[J]. J. Mater. Chem. A, 2020,8(37):19196-19245. doi: 10.1039/D0TA05797E

    23. [23]

      Shen W, Qiao L, Ding J, Sui Y M. P and Se-codopants triggered basal plane active sites in NbS2 3D nanosheets toward electrocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2022,581152419. doi: 10.1016/j.apsusc.2022.152419

    24. [24]

      Wang J, Hu J, Liang C, Chang L M, Du Y C, Han X J, Sun J M, Xu P. Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting[J]. Chem. Eng. J., 2022,446137094. doi: 10.1016/j.cej.2022.137094

    25. [25]

      Wang Y, Zhu Y L, Zhao S L, She S X, Zhang F F, Chen Y, Williams T, Gengenbach T, Zu L H, Mao H Y, Zhou W, Shao Z P, Wang H T, Tang J, Zhao D Y, Selomulya C. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation[J]. Matter, 2020,3(6):2124-2137. doi: 10.1016/j.matt.2020.09.016

    26. [26]

      Jiang J, Zhang Y J, Zhu X J, Lu S, Long L L, Chen J J. Nanostructured metallic FeNi2S4 with reconstruction to generate FeNi-based oxide as a highly-efficient oxygen evolution electrocatalyst[J]. Nano Energy, 2021,81105619. doi: 10.1016/j.nanoen.2020.105619

    27. [27]

      Zhang Y Z, Song X Y, Guo X, Li X. Design of molybdenum phosphide @ nitrogen-doped nickel-cobalt phosphide heterostructures for boosting electrocatalytic overall water splitting[J]. J. Colloid Interface Sci., 2023,648:585-594. doi: 10.1016/j.jcis.2023.05.202

    28. [28]

      Selvam N C S, Du L J, Xia B Y, Yoo P J, You B. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities[J]. Adv. Funct. Mater., 2021,31(12)2008190. doi: 10.1002/adfm.202008190

    29. [29]

      Chen H Y, Chen J X, He H, Chen X, Jia C G, Chen D, Liang J H, Yu D D, Yao X, Qin L S, Huang Y X, Wen Z H. Amorphous CoFeB nanosheets with plasmon-regulated dynamic active sites for electrocatalytic water oxidation[J]. Appl. Catal. B: Environ., 2023,323122187. doi: 10.1016/j.apcatb.2022.122187

    30. [30]

      Bergmann A, Martinez M E, Teschner D, Chernev P, Gliech M, Araújo J F, Reier T, Dau H, Strasser P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J]. Nat. Commun., 2015,6(10)8625.

    31. [31]

      Jiang S, Pang M J, Liu R, Song J, Wang R W, Li N, Pan Q L, Yang H, He W X, Zhao J G. Enhancement of the capacitance of rich-mixed-valence Co-Ni bimetal phosphide by oxygen doping for advanced hybrid supercapacitors[J]. J. Alloy. Compd., 2022,895162451. doi: 10.1016/j.jallcom.2021.162451

    32. [32]

      Guo X, Yang N, Zhu Z Z, Zhang Y Z, Chen J, Qi J Y, Li X. Iron-cobalt phosphide nanoarrays grown on waste wool-derived carbon: An efficient electrocatalyst for degradation of tetracycline[J]. J. Environ. Chem. Eng., 2022,10(6)108788. doi: 10.1016/j.jece.2022.108788

    33. [33]

      Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis[J]. Nanoscale, 2021,13(26):11314-11324.

    34. [34]

      Wang J S, Zhang Z F, Song H R, Zhang B, Liu J, Shai X X, Miao L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2021,31(9)2008578. doi: 10.1002/adfm.202008578

    35. [35]

      Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation[J]. Nano. Lett., 2021,21(1):492-499. doi: 10.1021/acs.nanolett.0c03950

    36. [36]

      Liao H B, Sun Y M, Dai C C, Du Y H, Xi S B, Liu F, Yu L H, Yang Z Y, Hou Y L, Fisher A C, Li S Z, Xu Z C. An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts[J]. Nano Energy, 2018,50:273-280. doi: 10.1016/j.nanoen.2018.05.060

    37. [37]

      Qiu H J, Du P, Hu K L, Gao J J, Li H L, Liu P, Ina T, Ohara K, Ito Y, Chen M W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries[J]. Adv. Mater., 2019,31(19)1900843. doi: 10.1002/adma.201900843

    38. [38]

      Zhou Q W, Shen Z H, Zhu C, Li J C, Ding Z Y, Wang P, Pan F, Zhang Z, Ma H X, Wang S Y, Zhang H G. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption[J]. Adv. Mater., 2018,30(27)1800140. doi: 10.1002/adma.201800140

    39. [39]

      Men Y N, Li P, Yang F L, Cheng G Z, Chen S L, Luo W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2019,253:21-27. doi: 10.1016/j.apcatb.2019.04.038

    40. [40]

      Liang K, Pakhira S, Yang Z Z, Nijamudheen A, Ju L C, Wang M Y, Aguirre V C I, Sterbinsky G E, Du Y G, Feng Z X, Mendoza C J L, Yang Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte[J]. ACS Catal., 2019,9(1):651-659. doi: 10.1021/acscatal.8b04291

    41. [41]

      Sun W, Sun J, Du L, Du C Y, Gao Y Z, Yin G P. Synthesis of nitrogen-doped niobium dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum[J]. Electrochim. Acta, 2016,195:166-174. doi: 10.1016/j.electacta.2016.02.122

    42. [42]

      Lu M J, Li L, Chen D, Li J Z, Klyui N I, Han W. MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting[J]. Electrochim. Acta, 2020,330135210. doi: 10.1016/j.electacta.2019.135210

    43. [43]

      Yang H, Li S X, Yu H W, Zheng F Y, Lin L X, Chen J, Li Y H, Lin Y. In situ construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers[J]. Nanoscale, 2019,11(18):8950-8958. doi: 10.1039/C9NR01146C

    44. [44]

      Bhanja P, Kim Y, Paul B, Kaneti Y V, Alothman A A, Bhaumik A, Yamauchi Y. Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction[J]. Chem. Eng. J., 2021,405126803. doi: 10.1016/j.cej.2020.126803

    45. [45]

      Palm I, Kibena P E, Mooste M, Kozlova J, Käärik M, Kikas A, Treshchalov A, Leis J, Kisand V, Tamm A, Holdcroft S, Atanassov P, Tammeveski K. Nitrogen and phosphorus dual-doped silicon carbide-derived carbon/carbon nanotube composite for the anion-exchange membrane fuel cell cathode[J]. ACS Appl. Energy Mater., 2022,5(3):2949-2958. doi: 10.1021/acsaem.1c03627

    46. [46]

      Cui X Z, Meng L, Zhang X H, Wang X G, Shi J L. Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction[J]. Electrochim. Acta, 2019,295:384-392. doi: 10.1016/j.electacta.2018.10.169

    47. [47]

      Hao Q Y, Li S Y, Liu H, Mao J, Li Y, Liu C, Zhang J, Tang C C. Dual tuning of nickel sulfide nanoflake array electrocatalyst through nitrogen doping and carbon coating for efficient and stable water splitting[J]. Catal. Sci. Technol., 2019,9(12):3099-3108. doi: 10.1039/C9CY00688E

    48. [48]

      Xie W W, Yu T W, Ou Z Q, Zhang J L, Li R C, Song S Q, Wang Y. Self-supporting clusters constituted of nitrogen-doped CoMoO4 nanosheets for efficiently catalyzing the hydrogen evolution reaction in alkaline media[J]. ACS Sustain. Chem. Eng., 2020,8(24):9070-9078. doi: 10.1021/acssuschemeng.0c02283

    49. [49]

      Nayak A K, Enhtuwshin E, Kim S J, Han H. Facile Synthesis of N-doped WS2 nanosheets as an efficient and stable electrocatalyst for hydrogen evolution reaction in acidic media[J]. Catalysts, 2020,10(11)1238. doi: 10.3390/catal10111238

    50. [50]

      Chen X, Qiu Z J, Xing H L, Fei S X, Ma L B. Tertiary-amine-assisted synthesis of hierarchical porous nitrogen-incorporated cobalt-iron (oxy)hydroxide nanosheets for improved oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4(9):8866-8874. doi: 10.1021/acsaem.1c01030

    51. [51]

      Bolar S, Shit S, Murmu N C, Kuila T. Doping-assisted phase changing effect on MoS2 towards hydrogen evolution reaction in acidic and alkaline pH[J]. ChemElectroChem, 2020,7(1):336-346. doi: 10.1002/celc.201901870

    52. [52]

      SU F M, ZHANG D, LIANG F. Progress in the preparation and modification of nanocatalytic materials by low-temperature plasma[J]. Appl. Chem., 2019,36(8):882-891.

    53. [53]

      Chen T L, Zhang R, Chen G L, Huang J, Chen W, Wang X Q, Chen D L, Li C R, Ostrikov K K. Plasma-doping-enhanced overall water splitting: Case study of NiCo hydroxide electrocatalyst[J]. Catal. Today, 2019,337:147-154. doi: 10.1016/j.cattod.2019.04.017

    54. [54]

      Nguyen V T, Yang T Y, Le P A, Yen P J, Chueh Y L, Wei K H. New simultaneous exfoliation and doping process for generating MX2 nanosheets for electrocatalytic hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,11(16):14786-14795. doi: 10.1021/acsami.9b01374

    55. [55]

      Yu H T, Li Y C, Li X H. Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen reduction reaction[J]. Chem.-Eur. J., 2014,20(12):3457-3462. doi: 10.1002/chem.201303814

    56. [56]

      Ashraf M A, Yang Y F, Zhang D Q, Pham B T. Bifunctional and binder-free S-doped Ni-P nanospheres electrocatalyst fabricated by pulse electrochemical deposition method for overall water splitting[J]. J. Colloid Interface Sci., 2020,577:265-278. doi: 10.1016/j.jcis.2020.05.060

    57. [57]

      Liu J L, Zhu D D, Ling T, Vasileff A, Qiao S Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017,40:264-273. doi: 10.1016/j.nanoen.2017.08.031

    58. [58]

      Xu R R, Jiang T F, Fu Z, Cheng N Y, Zhang X X, Zhu K, Xue H G, Wang W J, Tian J Q, Chen P. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution[J]. Nano Energy, 2020,78105347. doi: 10.1016/j.nanoen.2020.105347

    59. [59]

      Li S, Yang N, Liao L, Luo Y Z, Wang S Y, Cao F F, Zhou W, Huang D K, Chen H. Doping β-CoMoO4 nanoplates with phosphorus for efficient hydrogen evolution reaction in alkaline media[J]. ACS Appl. Energy Mater., 2018,10(43):37038-37045. doi: 10.1021/acsami.8b13266

    60. [60]

      Chang J F, Li K, Wu Z J, Ge J J, Liu C P, Xing W. Sulfur-doped nickel phosphide nanoplates arrays: A monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Appl. Energy Mater., 2018,10(31):26303-26311. doi: 10.1021/acsami.8b08068

    61. [61]

      Xie W W, Huang J H, Huang L T, Geng S P, Song S Q, Tsiakaras P, Wang Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity[J]. Appl. Catal. B: Environ., 2022,303120871. doi: 10.1016/j.apcatb.2021.120871

    62. [62]

      Park K, Kwon J, Jo S, Choi S, Enkhtuvshin E, Kim C, Lee D, Kim J, Sun S, Han H, Song T. Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction[J]. Chem. Eng. J., 2022,439135720. doi: 10.1016/j.cej.2022.135720

    63. [63]

      Anjum M A R, Lee M H, Lee J S. Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. ACS Catal., 2018,8(9):8296-8305. doi: 10.1021/acscatal.8b01794

    64. [64]

      Liu J L, Wang Z Y, Li J, Cao L J, Lu Z G, Zhu D D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution[J]. Small, 2020,16(4)1905738. doi: 10.1002/smll.201905738

    65. [65]

      Cui X, Chen Z G, Wang Z, Chen M H, Guo X H, Zhao Z G. Tuning sulfur doping for bifunctional electrocatalyst with selectivity between oxygen and hydrogen evolution[J]. ACS Appl. Energy Mater., 2018,1(11):5822-5829. doi: 10.1021/acsaem.8b01186

    66. [66]

      Zhang X Y, Zhu Y R, Chen Y, Dou S Y, Chen X Y, Dong B, Guo B Y, Liu D P, Liu C G, Chai Y M. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides[J]. Chem. Eng. J., 2020,399125831. doi: 10.1016/j.cej.2020.125831

    67. [67]

      Liu Z M, Gao D Z, Hu L N, Liu H, Li Y, Xue Y M, Liu F, Zhang J, Tang C C. Boron-doped CoSe2 nanowires as high-efficient electrocatalyst for hydrogen evolution reaction[J]. Colloid Surf. A, 2022,646128903. doi: 10.1016/j.colsurfa.2022.128903

    68. [68]

      Zhang R, Huang J, Chen G L, Chen W, Song C S, Li C R, Ostrikov K. In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting[J]. Appl. Catal. B: Environ., 2019,254:414-423. doi: 10.1016/j.apcatb.2019.04.089

    69. [69]

      Qi J L, Wang H H, Lin J H, Li C, Si X Q, Cao J, Zhong Z X, Feng J C. Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen[J]. J. Colloid Interface Sci., 2019,557:28-33. doi: 10.1016/j.jcis.2019.09.009

    70. [70]

      Wei Y S, Zou P C, Yue Y C, Wang M S, Fu W Y, Si S, Wei L, Zhao Xi S, Hu G Z, Xin H L. One-pot synthesis of B/P-co doped Co-Mo dual-nanowafer electrocatalysts for overall water splitting[J]. ACS Appl. Energy Mater., 2021,13(17):20024-20033. doi: 10.1021/acsami.1c01341

    71. [71]

      Wang J J, Zhang L A, Ren Y M, Wang P. Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction[J]. Electrochim. Acta, 2023,437141475. doi: 10.1016/j.electacta.2022.141475

    72. [72]

      Luo H, Wang X X, Wan C B, Xie L, Song M H, Qian P. A theoretical study of Fe adsorbed on pure and nonmetal (N, F, P, S, Cl)-doped Ti3C2O2 for electrocatalytic nitrogen reduction[J]. Nanomaterials, 2022,12(7)1081. doi: 10.3390/nano12071081

    73. [73]

      Novak T G., Prakash O, Tiwari A P, Jeon S. Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in Cu2WS4[J]. RSC Adv., 2019,9(1):234-239. doi: 10.1039/C8RA09261C

    74. [74]

      Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J]. Chem. Commun. (Camb), 2013,49(79):8896-8909. doi: 10.1039/c3cc44076a

    75. [75]

      Xiao Z H, Gan X R, Zhu T H, Lei D Y, Zhao H M, Wang P F. Activating the basal planes in 2H-MoTe2 monolayers by incorporating single-atom dispersed N or P for enhanced electrocatalytic overall water splitting[J]. Adv. Sustain. Syst., 2022,6(7)2100515. doi: 10.1002/adsu.202100515

    76. [76]

      Wan K, Luo J S, Zhang X, Subramanian P, Fransaer J. Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction[J]. J. Energy Chem., 2021,62:198-203. doi: 10.1016/j.jechem.2021.03.013

    77. [77]

      Jin H Y, Liu X, Chen S M, Vasileff A, Li L Q, Jiao Y, Song L, Zheng Y, Qiao S Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction[J]. ACS Energy Lett., 2019,4(4):805-810. doi: 10.1021/acsenergylett.9b00348

    78. [78]

      Yao N, Li P, Zhou Z, Meng R, Cheng G, Luo W. Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting[J]. Small, 2019,15(31)1901993. doi: 10.1002/smll.201901993

    79. [79]

      Luo Q M, Zhao Y W, Qi Y Y, Xin H Q, Wang C, Chen G J, Sun J, Liu M X, Xu K W, Ma F. Plasma-assisted nitrogen doping in Ni-Co-P hollow nanocubes for efficient hydrogen evolution electrocatalysis[J]. Nanoscale, 2020,12(25):13708-13718. doi: 10.1039/D0NR01783C

    80. [80]

      Diao J X, Li X L, Wang S Y, Zhao Z J, Wang W T, Chen K, Chen X T, Chao T T, Yang Y. Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation[J]. J. Mater. Chem. A, 2021,9(37):21440-21447. doi: 10.1039/D1TA05710C

    81. [81]

      Guo Z, Pang Y Y, Xie H, He G J, Parkin I P, Chai G L. Phosphorus-doped CuCo2O4 oxide with partial amorphous phase as a robust electrocatalyst for the oxygen evolution reaction[J]. ChemElectroChem, 2021,8(1):135-141. doi: 10.1002/celc.202001312

    82. [82]

      Chen L, Ren W Q, Xu C X, Chen Q, Chen Y Y, Wang W, Xu W Y, Hou Z H. Oxygen vacancy assisted low-temperature synthesis of P-doped Co3O4 with enhanced activity towards oxygen evolution reaction[J]. J. Alloy. Compd., 2022,894162038. doi: 10.1016/j.jallcom.2021.162038

    83. [83]

      Xi W G, Yan G, Lang Z L, Ma Y Y, Tan H Q, Zhu H T, Wang Y H, Li Y G. Oxygen-doped nickel iron phosphide nanocube arrays grown on Ni foam for oxygen evolution electrocatalysis[J]. Small, 2018,14(42)1802204. doi: 10.1002/smll.201802204

    84. [84]

      Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan Bi C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013,135(47):17881-17888. doi: 10.1021/ja408329q

    85. [85]

      Zhou G Y, Li M, Li Y L, Dong H, Sun D M, Liu X E, Xu L, Tian Z Q, Tang Y W. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting[J]. Adv. Funct. Mater., 2020,30(7)1905252. doi: 10.1002/adfm.201905252

    86. [86]

      Wen Y, Qi J Y, Zhao D Q, Liu J H, Wei P C, Kang X, Li X. O doping hierarchical NiCoP/Ni2P hybrid with modulated electron density for efficient alkaline hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2021,293120196. doi: 10.1016/j.apcatb.2021.120196

    87. [87]

      Fan W, Wang D, Sun Z, Ling X Y, Liu T X. Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe2 nanosheets as an efficient electrocatalyst for hydrogen evolution[J]. Inorg. Chem. Front., 2019,6(5):1209-1216. doi: 10.1039/C9QI00064J

    88. [88]

      Mai-Thi L N, Hoang T N V, Bui Q B. Novel sulfur-doped nickel cobalt phosphide nanosheet arrays on carbon cloth as an efficient electrocatalyst for water splitting[J]. Mater. Chem. Phys., 2021,270124746. doi: 10.1016/j.matchemphys.2021.124746

    89. [89]

      Sun T, Liu P, Zhang Y, Chen Z J, Zhang C, Guo X G, Ma C, Gao Y, Zhang S G. Boosting the electrochemical water splitting on Co3O4 through surface decoration of epitaxial S-doped CoO layers[J]. Chem. Eng. J., 2020,390124591. doi: 10.1016/j.cej.2020.124591

    90. [90]

      Li S S, Wang L, Su H, Hong A N, Wang Y X, Yang H J, Ge L, Song W Y, Liu J, Ma T Y, Bu X H, Feng P Y. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting[J]. Adv. Funct. Mater., 2022,32(23)2200733. doi: 10.1002/adfm.202200733

    91. [91]

      Cheng L, Huang H, Lin Z Y, Yang Y, Yuan Q, Hu L, Wang C L, Chen Q W. N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity[J]. J. Colloid Interface Sci., 2021,594:466-473. doi: 10.1016/j.jcis.2021.03.074

    92. [92]

      Chen Y Y, Zhang Y, Jiang W J, Zhang X, Dai ZH, Wan L J, Hu J S. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano, 2016,10(9):8851-8860. doi: 10.1021/acsnano.6b04725

    93. [93]

      Maiti A, Srivastava S K. Sulphur edge and vacancy assisted nitrogen-phosphorus co-doped exfoliated tungsten disulfide: A superior electrocatalyst for hydrogen evolution reaction[J]. J. Mater. Chem. A, 2018,6(40):19712-19726. doi: 10.1039/C8TA06918B

    94. [94]

      Lv K L, Suo W Q, Shao M D, Zhu Y, Wang X P, Feng J J, Fang M W, Zhu Y. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency[J]. Nano Energy, 2019,63103834. doi: 10.1016/j.nanoen.2019.06.030

    95. [95]

      Naveen M H, Huang Y H, Bisalere K S, Seo K D, Park D S, Shim Y B. Enhanced electrocatalytic activities of in situ produced Pd/S/N-doped carbon in oxygen reduction and hydrogen evolution reactions[J]. ACS Appl. Energy Mater., 2021,4(1):575-585. doi: 10.1021/acsaem.0c02461

    96. [96]

      Wang J, Xuan H C, Meng L X, Yang J T, Yang J L, Liang X H, Li Y P, Han P D. Facile synthesis of N, S co-doped CoMoO4 nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction[J]. Ionics, 2022,28(10):4685-4695. doi: 10.1007/s11581-022-04707-z

    97. [97]

      Xu J Y, Ge L, Zhou Y J, Jiang G Y, Li L, Li Y C, Li Y S. Insights into N, P, S multi-doped Mo2C/C composites as highly efficient hydrogen evolution reaction catalysts[J]. Nanoscale Adv., 2020,2(8):3334-3340. doi: 10.1039/D0NA00335B

    98. [98]

      Tian S F, Tang Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping[J]. J. Mater. Chem. C, 2021,9(18):6040-6050. doi: 10.1039/D1TC00668A

    99. [99]

      Wang Y H, Wang Fe, Fang Y, Zhu J F, Luo H J, Qi J, Wu W L. Self-assembled flower-like MnO2 grown on Fe-containing urea-formaldehyde resins based carbon as catalyst for oxygen reduction reaction in alkaline direct methanol fuel cells[J]. Appl. Surf. Sci., 2019,496143566. doi: 10.1016/j.apsusc.2019.143566

    100. [100]

      Xing Y Y, Li D, Li L H, Tong H M, Jiang D L, Shi W D. Accelerating water dissociation kinetic in Co9S8 electrocatalyst by Mn/N co-doping toward efficient alkaline hydrogen evolution[J]. Int. J. Hydrog. Energy, 2021,46(11):7989-8001. doi: 10.1016/j.ijhydene.2020.12.037

    101. [101]

      Duan J J, Chen S, Vasileff A, Qiao S Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting[J]. ACS Nano, 2016,10(9):8738-8745. doi: 10.1021/acsnano.6b04252

    102. [102]

      Liu K L, Wang F M, He P, Shifa T A, Wang Z X, Cheng Z Z, Zhan X Y, He J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides[J]. Adv. Energy Mater., 2018,8(15)1703290. doi: 10.1002/aenm.201703290

    103. [103]

      Ye Q, Liu J, Lin L, Sun M, Wang Y F, Cheng Y L. Fe and P dual-doped nickel carbonate hydroxide/carbon nanotube hybrid electrocatalysts for an efficient oxygen evolution reaction[J]. Nanoscale, 2022,14(17):6648-6655. doi: 10.1039/D2NR00184E

    104. [104]

      Huang Y C, Zhou W B, Kong W C, Chen L L, Lu X L, Cai H Q, Yuan Y R, Zhao L M, Jiang Y Y, Li H T, Wang L M, Wang L, Wang H, Zhang J W, Gu J, Fan Z J. Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production[J]. Adv. Sci., 2022,9(36)2204949. doi: 10.1002/advs.202204949

    105. [105]

      Wang C, Shang H Y, Wang Y, Li J, Guo SY, Guo J, Du Y K. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis[J]. Nanoscale, 2021,13(15):7279-7284. doi: 10.1039/D1NR00075F

    106. [106]

      Zhan Y X, Zhou X M, Nie H G, Xu X J, Zheng X N, Hou J J, Duan H, Huang S M, Yang Z. Designing Pd/O co-doped MoSx for boosting the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019,7(26):15599-15606. doi: 10.1039/C9TA02997D

    107. [107]

      Chen Z J, Zheng R J, Graś M, Wei W, Lota G, Chen H, Ni B J. Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution[J]. Appl. Catal. B: Environ., 2021,288120037. doi: 10.1016/j.apcatb.2021.120037

    108. [108]

      Ali U, Sohail K, Liu Y Q, Yu X D, Xing S X. Molybdenum and phosphorous dual-doped, transition-metal-based, free-standing electrode for overall water splitting[J]. ChemElectroChem, 2021,8(9):1612-1620. doi: 10.1002/celc.202100217

    109. [109]

      Dong Y H, Chen X B, Yu B, Zhang W Z, Zhu X B, Liu Z C. Engineering of P vacancies and phosphate on Fe-doped Ni2P nanosheet arrays for enhanced oxygen evolution[J]. J. Alloy. Compd., 2022,905164023. doi: 10.1016/j.jallcom.2022.164023

    110. [110]

      Zhang X X, Zhang X L, Qu G M, Wang Z H, Wei Y R, Yin J M, Xiang G T, Xu X J. Nickel-cobalt double oxides with rich oxygen vacancies by B-doping for asymmetric supercapacitors with high energy densities[J]. Appl. Surf. Sci., 2020,512145621. doi: 10.1016/j.apsusc.2020.145621

    111. [111]

      Chen Z L, Chen M, Yan X X, Jia H X, Fei B, Ha Y, Qing H L, Yang H Y, Liu M, Wu R B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction[J]. ACS Nano, 2020,14(6):6968-6979. doi: 10.1021/acsnano.0c01456

    112. [112]

      Choi K, Moon I K, Oh J. An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis[J]. J. Mater. Chem. A, 2019,7(4):1468-1478. doi: 10.1039/C8TA07210H

    113. [113]

      Zhang Y Z, Zhu Z Z, Guo X, Qi J Y, Li X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting[J]. Chem. Eng. J., 2023,452139230. doi: 10.1016/j.cej.2022.139230

    114. [114]

      Wen Y, Qi J Y, Wei P C, Kang X, Li X. Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting[J]. J. Mater. Chem. A, 2021,9(16):10260-10269. doi: 10.1039/D1TA00885D

    115. [115]

      Deng L Q, Zhang K, Shi D, Liu S F, Xu D Q, Shao Y L, Shen J X, Wu Y Z, Hao X P. Rational design of Schottky heterojunction with modulating surface electron density for high-performance overall water splitting[J]. Appl. Catal. B: Environ., 2021,299120660. doi: 10.1016/j.apcatb.2021.120660

    116. [116]

      Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting[J]. J. Am. Chem. Soc., 2016,138(44):14686-14693. doi: 10.1021/jacs.6b08491

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(3)
  • Abstract views(407)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return