Citation: Ce LI, Ji-Ming XI, Zhen-Zhong LU, Rui ZHANG, Ling HUANG. Synthesis, structure, and photochromic properties of two coordination polymers built from 1, 4, 5, 8-naphthalenediimide derivative[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2425-2431. doi: 10.11862/CJIC.2023.209 shu

Synthesis, structure, and photochromic properties of two coordination polymers built from 1, 4, 5, 8-naphthalenediimide derivative

  • Corresponding author: Zhen-Zhong LU, iamzzlu@njtech.edu.cn
  • Received Date: 31 May 2023
    Revised Date: 7 November 2023

Figures(9)

  • Photochromic materials of reversible color change and appropriate photo - generated color lifetime are important for inkless and erasable printing technology. We designed a naphthalene diimide - based (NDI - based) ligand (H2ncm) by combining 1, 4, 5, 8-naphthalenetetracarboxylic dianhydride with methionine and synthesized two coordination polymers from Zn2+ and H2ncm through solvothermal reactions. Compound [Zn(ncm)(H2O)4]·2DMF (1) is composed of one Zn2+ ion, one ncm2- ligand, four coordinated water, and two DMF solvent molecules. The Zn2+ ion is in an octahedral coordination environment and linked by ncm2- ligands into a linear chain. Compound [Zn2(ncm)2(H2O)4] (2) contains two Zn2+ ions, two ncm2- ligands, and four coordinated water molecules. The two Zn2+ ions are bridged by two carboxylate groups into a binuclear Zn2 unit, which are linked by ncm2- ligands into a layer structure.2 showed a photo-induced color change from yellow to dark brown. The photo-induced brown color could be stable for up to three weeks in the air but changed back to yellow within 5 min upon heating at 70 ℃. We showed that this photochromism originates from the generation of NDI· radical upon light irradiation.
  • 加载中
    1. [1]

      Zhu B L, Jin Y P, Jiang J, Zuo M H, Cui S X. Two new photochromic supramolecular compositions based on viologen: Photocontrolled fluorescence, aniline detection and inkless erasable printing performance[J]. New J. Chem., 2022,46:1905-1911. doi: 10.1039/D1NJ04918F

    2. [2]

      Zhong X F, Luo G J, Li W B, Chen X H, Wu Y, Chen Y H, Ye J W, Bai J, Mo Z W, Chen X M. A series of naphthalenediimide-based metal - organic frameworks: Synthesis, photochromism and inkless and erasable printing[J]. Dalton Trans., 2022,51:14852-14857. doi: 10.1039/D2DT02290G

    3. [3]

      Yang D D, Zheng H W, Fang Y H, Liang Q F, Han Q Z, Shi Y S, Zheng X J. Multistimuli-responsive materials based on Zn(Ⅱ)-viologen coordination polymers and their applications in inkless print and anticounterfeiting[J]. Inorg. Chem., 2022,61:7513-7522. doi: 10.1021/acs.inorgchem.2c00599

    4. [4]

      Xu X, Yang M, Lu Q, Yu S, Ma S, Tian A, Ying J. Three photochromic materials based on POMs and viologens for UV probing, visual detection of metal ions and amine detection[J]. CrystEngComm, 2022,24:7677-7685. doi: 10.1039/D2CE01244H

    5. [5]

      Yang D D, Shi Y S, Xiao T, Fang Y H, Zheng X J. Three-dimensional viologen based lanthanide - organic frameworks: Photochromism and fluorescence detection of quinolone antibiotics[J]. Inorg. Chem., 2023,62(15):6084-6091. doi: 10.1021/acs.inorgchem.3c00065

    6. [6]

      Li L, Yu Y T, Hua Y, Li X N, Zhang H. Recent progress in polyoxo-metalate-viologen photochromic hybrids: Structural design, photochromic mechanism, and applications[J]. Inorg. Chem. Front., 2023,10:1965-1985. doi: 10.1039/D3QI00040K

    7. [7]

      Zhou T D, Chen J T, Wang T T, Yan H, Xu Y M, Li Y X, Sun W B. One-dimensional chain viologen-based lanthanide multistimulus-responsive materials with photochromism, photoluminescence, photomagnetism, and ammonia/amine vapor sensing[J]. ACS Appl. Mater. Interfaces, 2022,14:57037-57046. doi: 10.1021/acsami.2c18143

    8. [8]

      Roy I, Stoddart J F. Cyclodextrin metal-organic frameworks and their applications[J]. Acc. Chem. Res., 2021,54:1440-1453. doi: 10.1021/acs.accounts.0c00695

    9. [9]

      Islamoglu T, Chen Z, Wasson M C, Buru C T, Kirlikovali K O, Afrin U, Mian M R, Farha O K. Metal - organic frameworks against toxic chemicals[J]. Chem. Rev., 2020,120:8130-8160. doi: 10.1021/acs.chemrev.9b00828

    10. [10]

      Xing S, Janiak C. Design and properties of multiple-emitter luminescent metal organic frameworks[J]. Chem. Commun., 2020,56:12290-12306. doi: 10.1039/D0CC04733C

    11. [11]

      Qian Q, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF - based membranes for gas separations[J]. Chem. Rev., 2020,120:8161-8266. doi: 10.1021/acs.chemrev.0c00119

    12. [12]

      WANG Y, LI X Z, LAI Y J, NIU Z. Zirconium-based metal-organic framework for tetramethylsilane/isopentane separation[J]. Chinese J. Inorg. Chem., 2023,39(10):1841-1847. doi: 10.11862/CJIC.2023.163

    13. [13]

      ZUO Q, MA L F. Synthesis and crystal structure of the charge transfer complexes of arylthiotetrathiafulvalenes and iodine[J]. Chinese J. Inorg. Chem., 2023,39(10):1869-1876. doi: 10.11862/CJIC.2023.156

    14. [14]

      Xiao T, Shi Y S, Yang D D, Zheng H W, Fang Y H, Liang Q F, Zheng X J. A UV and X-ray dual photochromic Zn(Ⅱ) metal-organic framework based on viologen: Photo - controlled luminescence and temperature-dependent phosphorescence[J]. Dyes Pigment., 2022,208110812.

    15. [15]

      Liu J J, Fu J J, He C X, Liu T, Cheng F X. A viologen-derived hostguest MOF material: Photochromism, photoswitchable luminescence, and inkless and erasable printing[J]. J. Solid State Chem., 2022,306122812. doi: 10.1016/j.jssc.2021.122812

    16. [16]

      Li W B, Chen X H, Chen J Z, Huang R, Ye J W, Chen L, Wang H P, Yang T, Tang L Y, Bai J, Mo Z W, Chen X M. Photochromic metalorganic framework for high-resolution inkless and erasable printing[J]. ACS Appl. Mater. Interfaces, 2022,14:8458-8463. doi: 10.1021/acsami.1c23512

    17. [17]

      Zhang W W, Jin Y P, Yu J H, Zhu B L, Jiang J, Zuo M H, Chen Y F, Li J J, Cui S X. A novel multicolor viologen-derived Zn-organic coordination polymer for environment friendly ink free erasable printing[J]. J. Solid State Chem., 2021,304122597. doi: 10.1016/j.jssc.2021.122597

    18. [18]

      Shi Y S, Yang D D, Xiao T, Fang Y H, Xia Z G. Naphthalenediimide-based photochromic MOFs: Structure visualization upon radical formation, and applications in purple light detection, inkless printing and anti-counterfeiting[J]. Chem. Eng. J., 2023,462142275. doi: 10.1016/j.cej.2023.142275

    19. [19]

      Liu J J, Fu J J, Liu T, Cheng F X. Photochromic polyoxometalate/ naphthalenediimide hybrid structure with visible - light - driven dye degradation[J]. J. Solid State Chem., 2022,312123236. doi: 10.1016/j.jssc.2022.123236

    20. [20]

      Yang Q, Gong W, Cui X W, Zhou C S. Functionalization of cellulose paper by coating nano metal - organic frameworks for use as photochromic material[J]. J. Chem. Soc. Pakistan, 2021,43:67-74. doi: 10.52568/000548/JCSP/43.01.2021

    21. [21]

      Mallick A, Garai B, Addicoat M A, Petkov P S, Heine T, Banerjee R. Solid state organic amine detection in a photochromic porous metal organic framework[J]. Chem. Sci., 2015,6:1420-1425. doi: 10.1039/C4SC03224A

    22. [22]

      Mollick S, Mukherjee S, Kim D, Qiao Z, Desai A V, Saha R, More Y D, Jiang J, Lah M S, Ghosh S. Hydrophobic shielding of outer surface: Enhancing the chemical stability of metal - organic polyhedra[J]. Angew. Chem. Int. Ed., 2019,58:1041-1045.

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    8. [8]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    9. [9]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    15. [15]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    16. [16]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    17. [17]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    18. [18]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    19. [19]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    20. [20]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

Metrics
  • PDF Downloads(1)
  • Abstract views(263)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return