Citation: Yiqing KANG, Yin WANG, Yueyuan MIAO, Yanru WANG, Siyu WANG, Lijie ZHANG, Daohao LI. Efficient hydrogen evolution reaction activity induced by P-doped defective WS2 nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 373-382. doi: 10.11862/CJIC.2023.208 shu

Efficient hydrogen evolution reaction activity induced by P-doped defective WS2 nanosheets

Figures(9)

  • Herein, tungsten disulfide (WS2) nanosheets were firstly prepared by ultrasonic stripping method. Subsequently, the mixture of WS2 nanosheets and P powder were treated by the Ar plasma, obtaining P-doped defective WS2 nanosheets (P-D-WS2 NSs). The as-prepared P-D-WS2 NSs samples exhibited higher catalytic activity for hydrogen evolution reaction (HER) than defective WS2 nanosheets and pure WS2 nanosheets, such as lower overpotential, smaller Tafel slope, and better durability. Density functional theory calculations showed that the P atoms and defective structures in WS2 regulated the electronic environment around the materials, optimizing the energy barrier of H+ adsorption and hydrogen formation kinetics performance, thus improving the HER electrocatalytic activity.
  • 加载中
    1. [1]

      Li Y G, Wang H L, Xie L M, Liang Y, Hong G Y, Dai H S, Dai H J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2011,133(19):7296-7299. doi: 10.1021/ja201269b

    2. [2]

      Tiwari A P, Kim D, Kim Y, Prakash O, Lee H. Highly qctive and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction[J]. Nano Energy, 2016,28:366-372. doi: 10.1016/j.nanoen.2016.08.065

    3. [3]

      Song J H, Zhu C Z, Xu B Z, Fu S F, Mark H E, Ye R F, Du D, Scott P B, Lin Y H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting[J]. Adv. Energy Mater., 2017,7(2)1601555. doi: 10.1002/aenm.201601555

    4. [4]

      Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Zhao H J, Gu L, Yang H G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water[J]. Nat. Commun., 2015,68064. doi: 10.1038/ncomms9064

    5. [5]

      Tang C, Zhong L, Zhang B, Wang H F, Zhang Q. 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis[J]. Adv. Mater., 2018,30(5)1705110. doi: 10.1002/adma.201705110

    6. [6]

      Yuan K, Zhuang X D, Fu H Y, Brunklaus G, Forster M, Chen Y W, Feng X L, Ullrich S. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2016,55(24):6858-6863. doi: 10.1002/anie.201600850

    7. [7]

      Huang Y C, Sun Y H, Zheng X L, Toshihiro A, Brian P, Jier H, He X, Bian W, Sabrina Y, Nicholas W, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution[J]. Nat. Commun., 2019,10(1):1-11. doi: 10.1038/s41467-018-07882-8

    8. [8]

      Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2019,29(10)1809151. doi: 10.1002/adfm.201809151

    9. [9]

      Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting[J]. Adv Mater., 2019,31(17)1807134. doi: 10.1002/adma.201807134

    10. [10]

      Pramoda K, Gupta U, Chhetri M, Bandyopadhyay A, Pati S K, Rao C N R. Nanocomposites of C3N4 with layers of MoS2 and nitrogenated RGO, obtained by covalent cross-linking: Synthesis, characterization, and HER activity[J]. ACS Appl. Mater. Interfaces, 2017,9(12):10664-10672. doi: 10.1021/acsami.7b00085

    11. [11]

      Sun Y, Alimohammadi F, Zhang D, Guo G S. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis[J]. Nano Lett., 2017,17(3):1963-1969. doi: 10.1021/acs.nanolett.6b05346

    12. [12]

      Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Zhuang X D, Feng X L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angew. Chem. Int. Ed., 2016,55(23):6702-6707. doi: 10.1002/anie.201602237

    13. [13]

      Chua X J, Luxa J, Eng A Y S, Tan S M, Sofer Z, Pumera M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction[J]. ACS Catal., 2016,6(9):5724-5734. doi: 10.1021/acscatal.6b01593

    14. [14]

      Duan J J, Chen S, Chambers B A, Andersson G G, Qiao S Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Adv. Mater., 2015,27(28):4234-4241. doi: 10.1002/adma.201501692

    15. [15]

      Cheng L, Huang W J, Gong Q G, Liu C H, Liu Z, Li Y G, Dai H J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2014,53(30):7860-7863. doi: 10.1002/anie.201402315

    16. [16]

      Wang F, He P, Li Y, Shiafa T A, Deng Y, Liu K L, Wang Q S, Wang F, Wen Y, Wang Z X, Zhan X Y, Sun L F, He J. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis[J]. Adv. Funct. Mater., 2017,27(7)1605802. doi: 10.1002/adfm.201605802

    17. [17]

      An Y R, Fan X L, Luo Z F, Lau W M. Nanopolygons of monolayer MS2: Best morphology and size for HER catalysis[J]. Nano Lett., 2017,17(1):368-376. doi: 10.1021/acs.nanolett.6b04324

    18. [18]

      Tang K, Wang X F, Li Q, Yan C L. High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets[J]. Adv. Mater., 2018,30(7)1704779. doi: 10.1002/adma.201704779

    19. [19]

      Wang Q, Zhao Z L, Dong S, He D S, Lawrence M J, Han S B, Cai C, Xiang S H, Rodriguez P, Xiang B, Wang Z G, Liang Y Y, Gu M. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction[J]. Nano Energy, 2018,53:458-467. doi: 10.1016/j.nanoen.2018.09.003

    20. [20]

      Zhang X, Zhou F, Zhang S, Liang Y Y, Wang R H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization[J]. Adv. Sci., 2019,6(10)1900090. doi: 10.1002/advs.201900090

    21. [21]

      Gu C, Hu S, Zheng X S, Gao M R, Zheng Y R, Shi L, Gao Q, Zheng X, Chu W S, Yao H B, Zhu J F, Yu S H. Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis[J]. Angew. Chem. Int. Ed., 2018,57(15):4020-4024. doi: 10.1002/anie.201800883

    22. [22]

      Qian X, Liu H, Yang J, Wang H, Huang J, Xu C. Co-Cu-WSx ball-in-ball nanospheres as high-performance Pt-free bifunctional catalysts in efficient dye-sensitized solar cells and alkaline hydrogen evolution[J]. J. Mater. Chem. A, 2019,7(11):6337-6347. doi: 10.1039/C8TA12558A

    23. [23]

      Kwak I H, Abbas H G, Kwon I S, Park Y C, Seo J, Cho M K, Ahn J P, Seo H W, Park J, Kang H S. Intercalation of cobaltocene into WS2 nanosheets for enhanced catalytic hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019,7(14):8101-8106. doi: 10.1039/C9TA01238A

    24. [24]

      Xiong Q, Wang Y, Liu P F, Zheng L R, Wang G Z, Yang H G, Wong P K, Zhang H, Zhao H J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting[J]. Adv Mater., 2018,30(29)1801450. doi: 10.1002/adma.201801450

    25. [25]

      Xing Z C, Yang X R, Asiri A M, Sun X P. Three-dimensional structures of MoS2@Ni core/shell nanosheets array toward synergetic electrocatalytic water splitting[J]. ACS Appl. Mater. Interfaces, 2016,8(23):14521-14526. doi: 10.1021/acsami.6b02331

    26. [26]

      Li Y, Majewski M B, Islam S M, Hao S Q, Murthy A A, DisStefano J G, Haned E D, Xu Y B, Wolverton C, Kanatzidis M G, Chen X, Dravid V P. Morphological engineering of winged Au@MoS2 heterostructures for electrocatalytic hydrogen evolution[J]. Nano Lett., 2018,18(11):7104-7110. doi: 10.1021/acs.nanolett.8b03109

    27. [27]

      Amiinu I S, Pu Z, Liu X, Owusu K A, Monestel H G R, Boakye F O, Zhang H, Mu S C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries[J]. Adv. Funct. Mater., 2017,27(44)1702300. doi: 10.1002/adfm.201702300

    28. [28]

      Yuan Z, Li J, Yang M, Fang Z, Jian J H, Yu D S, Chen X D, Dai L M. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer[J]. J. Am. Chem. Soc., 2019,141(12):4972-4979. doi: 10.1021/jacs.9b00154

    29. [29]

      Zong L, Li M, Li C. Bioinspired coupling of inorganic layered nanomaterials with marine polysaccharides for efficient aqueous exfoliation and smart actuating hybrids[J]. Adv. Mater., 2017,29(10)1604691. doi: 10.1002/adma.201604691

    30. [30]

      Yu S, Kim J, Yoon K R, Jung J W, Oh J, Kim I D. Rational design of efficient electrocatalysts for hydrogen evolution reaction: single layers of WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers[J]. ACS Appl. Mater. Interfaces., 2015,7(51):28116-28121. doi: 10.1021/acsami.5b09447

    31. [31]

      Zhao X, Ma X, Sun J, Li D, Yang X. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution[J]. ACS Nano, 2016,10(2):2159-2166. doi: 10.1021/acsnano.5b06653

    32. [32]

      Salvati Jr L, Makovsky L E, Stencel J M, Brown F R, Hercules D M. Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies[J]. J. Phys. Chem., 1981,85(24):3700-3707. doi: 10.1021/j150624a035

    33. [33]

      Pelavin M, Hendrickson D N, Hollander J M, Jolly W L. Phosphorus 2p electron binding energies. correlation with extended hueckel charges[J]. J. Phys. Chem., 1970,74(5):1116-1121. doi: 10.1021/j100700a027

    34. [34]

      Morgan W E, Stec W J, Albridge R G. pi.-Bond feedback interpreted from the binding energy of the "2p" electrons of phosphorus[J]. Inorg. Chem., 1971,10(5):926-930. doi: 10.1021/ic50099a013

    35. [35]

      Jiang Y, Huang J B, Mao B G, An T Y, Wang J, Cao M H. Inside solid liquid interfaces: Understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction[J]. Appl. Catal. B-Environ., 2021,293120220. doi: 10.1016/j.apcatb.2021.120220

    36. [36]

      ZHOU Q, LI X B, JIAO S Z. Mesoporous regulated Co9S8/Ni3S2 composite electrode materials and electrocatalytic hydrogen evolution performance[J]. Chinese J. Inorg. Chem., 2021,37(11):1970-1980. doi: 10.11862/CJIC.2021.223 

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(193)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return