Citation: Hao-Yu XU, Rui WANG, Qiao-Ling KANG, Dong-Yun LI, Yang XU, Hong-Liang GE, Qing-Yi LU. Research progress on design of high entropy oxides and their applications in lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2241-2255. doi: 10.11862/CJIC.2023.206 shu

Research progress on design of high entropy oxides and their applications in lithium-ion batteries

Figures(11)

  • Revolutionary changes in energy storage technology have put forward higher requirements on next-generation anode materials for lithium-ion battery. Recently, a new class of materials with complex stoichiometric ratios, high entropy oxides (HEOs), has gradually emerging into sight and embracing the prosperity. The ideal elemental adjustability and attractive synergistic effect make HEOs promising to break through the integrated performance bottleneck of conventional anodes and provide new impetus for the design and development of electrochemical energy storage materials. Here, this review shares our unique viewpoints through an overview of the research status of HEOs anodes and specific descriptions regarding material design and electrochemical behavior. Specifically, the chemical composition regulation and structure design by combing the recent research of our group and important domestic and foreign literature. The control of intrinsic activity of HEOs including the introduction of metal heteroatom doping and non-metallic heteroatom doping. The influence of the increase of active-sites of HEOs to promote lithium storage performance is reviewed from the structural design including the construction of one-dimensional structures, two-dimensional structures, three-dimensional structures, hollow structures, carbon material composite. Finally, we envision the prospects and related challenges in this field, which will bring some enlightening guidance and criteria for researchers to further unlock the mysteries of HEO anodes.
  • 加载中
    1. [1]

      Ping X Y, Meng B, Yu X H, Ma Z Y, Pan X Y, Lin W. Structural, mechanical and thermal properties of cubic bixbyite-structured high-entropy oxides[J]. Chem. Eng. J., 2023,464142649. doi: 10.1016/j.cej.2023.142649

    2. [2]

      Lai D W, Kang Q L, Gao F, Lu Q Y. High-entropy effect of a metal phosphide on enhanced overall water splitting performance[J]. J. Mater. Chem. A, 2021,9:17913-1792. doi: 10.1039/D1TA04755H

    3. [3]

      Tomboc G M, Zhang X D, Choi S, Kim D, Lee L Y S, Lee K. Stabilization, characterization, and electrochemical applications of high-entropy oxides: Critical assessment of crystal phase-properties relationship[J]. Adv. Funct. Mater., 2022,32(43)2205142. doi: 10.1002/adfm.202205142

    4. [4]

      Zeng Y, Ouyang B, Liu J, Byeon Y W, Cai Z J, Miara L J, Wang Y, Ceder G. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022,378(6626):1320-1324. doi: 10.1126/science.abq1346

    5. [5]

      Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P. Entropy-stabilized oxides[J]. Nat. Commun., 2015,68485. doi: 10.1038/ncomms9485

    6. [6]

      Su L, Ren J K, Lu T, Chen K X, Ouyangj W, Zhang Y, Zhu X Y, Wang L Y, Min H H, Luo W, Sun Z F, Zhang Q B, Wu Y, Sun L T, Mai L Q, Xu F. Deciphering structural origins of highly reversible lithium storage in high entropy oxides with in situ transmission electron microscopy[J]. Adv. Mater., 2023,35(19)e2205751. doi: 10.1002/adma.202205751

    7. [7]

      Zhang F N, Cheng F H, Cheng C F, Guo M, Liu Y F, Miao Y, Gao F, Wang X M. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La)O high entropy fluorite oxides[J]. J. Mater. Sci. Technol., 2022,105:122-130. doi: 10.1016/j.jmst.2021.07.028

    8. [8]

      Gild J, Samiee M, Braun J L, Harrington T, Vega H, Hopkins P E, Vecchio K, Luo J. High-entropy fluorite oxides[J]. J. Eur. Ceram. Soc., 2018,38(10):3578-3584. doi: 10.1016/j.jeurceramsoc.2018.04.010

    9. [9]

      Xiao B, Wu G, Wang T D, Wei Z G, Sui Y W, Shen B L, Qi J Q, Wei F X, Zheng J C. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries[J]. Nano Energy, 2022,95106962. doi: 10.1016/j.nanoen.2022.106962

    10. [10]

      Sun Z, Zhao Y J, Sun C, Ni Q, Wang C Z, Jin H B. High entropy spinel-structure oxide for electrochemical application[J]. Chem. Eng. J., 2022,431133448. doi: 10.1016/j.cej.2021.133448

    11. [11]

      Nguyen T X, Patra J, Chang J K, Ting J M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance[J]. J. Mater. Chem. A, 2020,8(36):18963-18973. doi: 10.1039/D0TA04844E

    12. [12]

      Wang Y L, Li H Y, Liu H J, Yang L X, Zeng C L. Preparation and formation mechanism of Cr-free spinel-structured high entropy oxide (MnFeCoNiCu)3O4[J]. Ceram. Int., 2023,49(2):1940-1946. doi: 10.1016/j.ceramint.2022.09.159

    13. [13]

      Zheng Y, Wu X, Lan X X, Hu R Z. A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries[J]. Processes, 2022,10(1)49.

    14. [14]

      Kong Y Z, Yang Z R. Synthesis, structure and electrochemical properties of Al doped high entropy perovskite LiX(LiLaCaSrBa)Ti1-XAlXO3[J]. Ceram. Int., 2022,48(4):5035-5039. doi: 10.1016/j.ceramint.2021.11.041

    15. [15]

      Yan J H, Wang D, Zhang X Y, Li J S, Du Q, Liu X Y, Zhang J R, Qi X W. A high-entropy perovskite titanate lithium-ion battery anode[J]. J. Mater. Sci., 2020,55(16):6942-6951. doi: 10.1007/s10853-020-04482-0

    16. [16]

      Brahlek M, Gazda M, Keppens V, Mazza A R, Mccormack S J, Mielewczyk-gryn A, Musico B, Page K, Rost C M, Sinnott S B, Toher C, Ward T Z, Yamamoto A. What is in a name: Defining "high entropy" oxides[J]. APL Mater., 2022,10(11)110902. doi: 10.1063/5.0122727

    17. [17]

      Fu F, Liu X, Fu X G, Chen H W, Huang L, Fan J J, Le J B, Wang Q X, Yang W H, Ren Y, Amine K, Sun S G, Xu G L. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nat. Commun., 2022,13(1)2826. doi: 10.1038/s41467-022-30113-0

    18. [18]

      Chen Y W, Fu H Y, Huang Y Y, Huang L Q, Zheng X Y, Dai Y M, Huang Y H, Luo W. Opportunities for high-entropy materials in rechargeable batteries[J]. ACS Mater. Lett., 2021,3(2):160-170. doi: 10.1021/acsmaterialslett.0c00484

    19. [19]

      George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019,4(8):515-534. doi: 10.1038/s41578-019-0121-4

    20. [20]

      Patra J, Nguyen T X, Tsai C C, Clemens O, Li J, Pal P, Chan W K, Lee C H, Chen H Y T, Ting J M, Chang J K. Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries[J]. Adv. Funct. Mater., 2022,32(17)2110992. doi: 10.1002/adfm.202110992

    21. [21]

      Liu X F, Li X K, Li Y G, Zhang H J, Jia Q L, Zhang S W, Lei W. High-entropy oxide: a future anode contender for lithium-ion battery[J]. EcoMat., 2022,4e12261. doi: 10.1002/eom2.12261

    22. [22]

      Su J Y, Cao Z Z, Jiang Z P, Chen G H, Zhu Y X, Wang L Y, Li G R. High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material[J]. Int. J. Appl. Ceram. Technol., 2022,19(4):2004-2015. doi: 10.1111/ijac.14021

    23. [23]

      Wang X Z, Dong Q, Qiao H Y, Huang Z N, Saray M T, Zhong G, Lin Z W, Cui M J, Brozena A, Hong M, Xia Q Q, Gao J L, Chen G, Shahbazinan Y R, Wang D W, Hu L B. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications[J]. Adv. Mater., 2020,32(46)2002853. doi: 10.1002/adma.202002853

    24. [24]

      Lokcu E, Toparli C, Anik M. Electrochemical performance of (MgCoNiZn)1-xLixO high-entropy oxides in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(21):23860-23866. doi: 10.1021/acsami.0c03562

    25. [25]

      Mozdzierz M, Dabrowa J, Stepien A, Zajusz M, Stygar M, Zajac W, Danielewski M, Swierczek K. Mixed ionic-electronic transport in the high-entropy (Co, Cu, Mg, Ni, Zn)1-XLiXO oxides[J]. Acta Mater., 2021,208116735. doi: 10.1016/j.actamat.2021.116735

    26. [26]

      Xiang H Z, Xie H X, Chen Y X, Zhang H, Mao A Q, Zheng C H. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries[J]. J. Mater. Sci., 2021,56(13):8127-8142. doi: 10.1007/s10853-021-05805-5

    27. [27]

      Guo M, Liu Y F, Zhang F N, Cheng F H, Cheng C F, Miao Y, Gao F, Yu J. Inactive Al3+-doped La(CoCrFeMnNiAlX)1/(5+X)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes[J]. J. Adv. Ceram., 2022,11(5):742-753. doi: 10.1007/s40145-022-0568-4

    28. [28]

      Zhang G M, Long Y, Chen J X, Yan Z Q, Lin H T, Zhang F L. Oxidation behavior of Y0.1-doped feconialcrb high-entropy alloy[J]. Corrosion Sci., 2022,209110804. doi: 10.1016/j.corsci.2022.110804

    29. [29]

      Eroglu O, Kizil H. The effect of the iron doping on anatase TiO2 anode for electrochemical performance of sodium-ion batteries[J]. Solid State Ion., 2023,393116168. doi: 10.1016/j.ssi.2023.116168

    30. [30]

      Duan C Q, Tian K H, Li X L, Wang D, Sun H Y, Zheng R G, Wang Z Y, Liu Y G. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X=Cu, Mg, Zn) as the anode material for lithium-ion batteries[J]. Ceram. Int., 2021,47(22):32025-32032. doi: 10.1016/j.ceramint.2021.08.091

    31. [31]

      Liu X F, Xing Y Y, Xu K, Zhang H J, Gong M X, Jia Q L, Zhang S W, Lei W. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies[J]. Small, 2022,18(18)2200524. doi: 10.1002/smll.202200524

    32. [32]

      WANG P P, JIA Y G, SHAO X, CHENG J, MAO A Q, TAN J, FANG D L. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials[J]. CIESC J., 2022,73(12):5625-5637.  

    33. [33]

      Sun T T, Zhao X M, Li B, Shu H B, Luo L P, Xia W L, Chen M F, Zeng P, Yang X K, Gao P, Pei Y, Wang X Y. NiMoO4 Nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery[J]. Adv. Funct. Mater., 2021,31(25)2101285. doi: 10.1002/adfm.202101285

    34. [34]

      Feng H, Han Y, Li H B, Tian Y Z, Zhu H C, Jiang Z H, He T, Zhou G. Enhancement in impact toughness of cocrfemnni high-entropy alloy via nitrogen addition[J]. J. Alloy. Compd., 2023,932167615. doi: 10.1016/j.jallcom.2022.167615

    35. [35]

      Wang Q S, Sarkar A, Wang D, Velasco L, Azmi R, Bhattacharya S S, Bergfeldt T, Duvel A, Heitjans P, Brezesinski T, Hahn H, Breitung B. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries[J]. Energy Environ. Sci., 2019,12(8):2433-2442. doi: 10.1039/C9EE00368A

    36. [36]

      Jing L, Li W L, Gao C, Li M L, Fei W D. Enhanced energy storage performance achieved in multilayered pvdf-pmma nanocomposites incorporated with high-entropy oxide nanofibers[J]. ACS Appl. Energ. Mater., 2023,6(5):3093-3101. doi: 10.1021/acsaem.3c00054

    37. [37]

      Zou X K, Zhagn Y R, Huang Z P, Yue K, Guo Z H. High-entropy oxides: An emerging anode material for lithium-ion batteries[J]. Chem. Commun., 2023. doi: 10.1039/d3cc04225a

    38. [38]

      Wang H B, Zheng Y J, Peng Z L, Liu X L, Qu C, Huang Z Y, Cai Z L, Fan H S, Zhang Y F. Nanocavity-enriched Co3O4@ZnCo2O4@NC porous nanowires derived from 1d metal coordination polymers for fast Li+ diffusion kinetics and super Li+ storage[J]. Dalton Trans., 2021,50(21):7277-7283. doi: 10.1039/D1DT00475A

    39. [39]

      Liu J L, Li Y Q, Chen Z, Liu N, Zheng L, Shi W X, Wang X. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires[J]. J. Am. Chem. Soc., 2022,144(50):23191-23197. doi: 10.1021/jacs.2c10602

    40. [40]

      Tian L Y, Zhang Z, Liu S, Li G R, Gao X P. High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries[J]. Nano Energy, 2023,106108037. doi: 10.1016/j.nanoen.2022.108037

    41. [41]

      Triolo C, Xu W L, Petrovicova B, Pinna N, Santangelo S. Evaluation of entropy-stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium-ion batteries[J]. Adv. Funct. Mater., 2022,32(32)2202892. doi: 10.1002/adfm.202202892

    42. [42]

      Khossossi N, Singh D, Ainane A, Ahuja R. Recent progress of defect chemistry on 2D materials for advanced battery anodes[J]. Chem. Asian J., 2020,15(21):3390-3404. doi: 10.1002/asia.202000908

    43. [43]

      Yang Y X, Dong R G, Cheng H, Wang L L, Tu J B, Zhang S C, Zhao S H, Zhang B, Pan H G, Lu Y Y. 2D layered materials for fast-charging lithium-ion battery anodes[J]. Small, 2023,19(34)2301574. doi: 10.1002/smll.202301574

    44. [44]

      Wang Y R, Zhuang Q F, Li Y, Hu Y L, Liu Y Y, Zhang Q B, Shi L, He C X, Zheng X, Yu S H. Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries[J]. Nano Res., 2022,15(6):5064-5071. doi: 10.1007/s12274-021-4030-7

    45. [45]

      Sun X, Tan K, Liu Y, Zhang J Y, Denis D K, Zaman F U, Hou L R, Yuan C Z. A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti3C2 nanosheets with enhanced lithium storage for Li-ion batteries[J]. Nanoscale, 2019,11(36):16755-16766. doi: 10.1039/C9NR04377B

    46. [46]

      Duan H H, Du L, Zhang S K, Chen Z W, Wu S P. Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode[J]. J. Mater. Chem. A, 2019,7(14):8327-8334. doi: 10.1039/C9TA00294D

    47. [47]

      Wei J L, Rong K, Li X L, Wang Y C, Qiao Z A, Fang Y X, Dong S J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides[J]. Nano Res., 2022,15(3):2756-2763. doi: 10.1007/s12274-021-3860-7

    48. [48]

      Chen Y T, Lee J T, Liang T Y, Song Y H, Wu J M. Solid composite electrolyte based on oxygen vacancy effect of Lix(CoCrFeMnNi)O4-y high entropy oxides[J]. Electrochim. Acta, 2023,456142459. doi: 10.1016/j.electacta.2023.142459

    49. [49]

      Guo H L, Zhou J, Li Q Q, Li Y M, Zong W, Zhu J X, Xu J S, Zhang C, Liu T X. Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating[J]. Adv. Funct. Mater., 2020,30(15)2000024. doi: 10.1002/adfm.202000024

    50. [50]

      Xiao H, Li S P, Zhou J Y, Zhao C Y, Yuan Y, Xia X H, Bao Y W, Lourenco M, Homewood K, Gao Y. Synergetic contributions from the components of flexible 3D structured C/Ag/ZnO/CC anode materials for lithium-ion batteries[J]. Energy Environ. Mater., 2022. doi: 10.1002/eem2.12537

    51. [51]

      Guo M, Zhong S L, Xu T, Huang Y Q, Xia G L, Zhang T F, Yu X B. 3D hollow mxene (Ti3C2)/reduced graphene oxide hybrid nanospheres for high-performance Li-ion storage[J]. J. Mater. Chem. A, 2021,9(42):23841-23849. doi: 10.1039/D1TA07250A

    52. [52]

      Yang X B, Wang H Q, Song Y Y, Liu K T, Huang T T, Wang X Y, Zhang C F, Li J. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(23):26873-26881. doi: 10.1021/acsami.2c07576

    53. [53]

      Du M, Geng P B, Pei C X, Jiang X Y, Shan Y Y, Hu W H, Ni L B, Pang H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2022,61(41)202209350. doi: 10.1002/anie.202209350

    54. [54]

      Meng Z S, Gong X L, Xu J, Sun X C, Zeng F D, Du Z Y, Hao Z Y, Shi W, Yu S S, Hu X Y, Tian H W. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides[J]. Chem. Eng. J., 2023,457141242. doi: 10.1016/j.cej.2022.141242

    55. [55]

      Chen Y X, Shi X D, Lu B G, Zhou J. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassium-ion batteries[J]. Adv. Energy Mater., 2022,12(46)2202851. doi: 10.1002/aenm.202202851

    56. [56]

      Wei Q Y, Zhu H, Yu S J, Xu G Q, Yin J H, Tong J H, Chen T R, He X N, Guo P C, Jiang H D, Li J K, Wang Y X. High-performance lithium-ion batteries with different hollow-degree Fe3O4@C hollow nanostructures[J]. Appl. Surf. Sci., 2023,608155093. doi: 10.1016/j.apsusc.2022.155093

    57. [57]

      Ma Z P, Song A L, Liu Z, Guo Y Q, Yang X, Li Q, Fan Y Q, Dai L, Tian H, Qin X J, Liu H, Shao G J, Wang G X. Nanoconfined expansion behavior of hollow MnS@Carbon anode with extended lithiation cyclic stability[J]. Adv. Funct. Mater., 2023,332301112. doi: 10.1002/adfm.202301112

    58. [58]

      Zhu Y Q, Yang X, Xu L K, Jia G W, Du J. Hollow microscale and nanoscale structures as anode materials for lithium-ion batteries[J]. Chem. Mater., 2022,34(22):9803-9822. doi: 10.1021/acs.chemmater.2c02870

    59. [59]

      Lai D W, Ling L, Su M F, Kang Q L, Gao F, Lu Q Y. From amorphous to crystalline: A universal strategy for structure regulation of high-entropy transition metal oxides[J]. Chem. Sci., 2023,14(7):1787-1796. doi: 10.1039/D2SC04900G

    60. [60]

      Wei Y Q, Liu X H, Yao R Z, Qian J Y, Yin Y Y, Li D, Chen Y. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries[J]. J. Alloy. Compd., 2023,938168610. doi: 10.1016/j.jallcom.2022.168610

    61. [61]

      Zhang Y, Zhang Y R, Ma L Q, Yang M, Zhao X Y. NiCr-Cl LDH/rGO composite as anode material for sodium-ion batteries[J]. J. Electron. Mater., 2022,51(11):6067-6075. doi: 10.1007/s11664-022-09911-1

    62. [62]

      Pan J H, Sun C X, Liu J J, Zhao X S, Jiao C X, Wang C K, Wang Q. One-step synthesis method of flower-like Si@NiO/RGO composites as high-performance anode for lithium-ion batteries[J]. J. Alloy. Compd., 2023,947169506. doi: 10.1016/j.jallcom.2023.169506

    63. [63]

      Zhu J K, Tu W M, Pan H F, Zhang H, Liu B, Cheng Y P, Deng Z, Zhang H N. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano, 2020,14(5):5780-5787. doi: 10.1021/acsnano.0c00712

    64. [64]

      Yao W, Zhang F, Qiu W J, Xu Z X, Xu J G, Wen Y C. General synthesis of uniform three-dimensional metal oxides/reduced graphene oxide aerogels by a nucleation-inducing growth strategy for high-performance lithium storage[J]. ACS Sustain. Chem. Eng., 2019,7(1):847-857. doi: 10.1021/acssuschemeng.8b04467

    65. [65]

      Liu Z Y, Liu Y, Xu Y J, Zhagn H L, Shao Z P, Wang Z B, Chen H S. Novel high-entropy oxides for energy storage and conversion: From fundamentals to practical applications[J]. Green Energy Environ., 2023,8(5):13410-1357.

    66. [66]

      Chen P, Yang C, Gao P, Chen X L, Cheng Y J, Liu J L, Guo K K. Distinctive formation of bifunctional ZnCoS-rGO 3D hollow microsphere flowers with excellent energy storage performances[J]. Chem. Mater., 2022,34(13):5896-5911. doi: 10.1021/acs.chemmater.2c00794

    67. [67]

      Zhang W Y, Su Z, Yi S, Chen H L, Wang M H, Niu B, Zhang Y Y, Long D H. Sandwich structured metal oxide/reduced graphene oxide/metal oxide-based polymer electrolyte enables continuous inorganic-organic interphase for fast lithium-ion transportation[J]. Small, 2023,102207536.

    68. [68]

      Zheng C, Xu X C, Lin Q W, Chen Y W, Guo Z, Jian B Q, Li N, Zhang H Y, Lv W. Confined growth of Fe2O3 nanoparticles by holey graphene for enhanced sodium-ion storage[J]. Carbon, 2021,176:31-38. doi: 10.1016/j.carbon.2021.01.122

    69. [69]

      Wang X, Wang R, Kang Q L, Yan L J, Ma T L, Li D Y, Xu Y, Ge H L. Construction of Cu-doped Co3O4/rGO composites with a typical buffer structure for high-performance lithium storage[J]. Colloids Surf. A, 2023,656130325. doi: 10.1016/j.colsurfa.2022.130325

    70. [70]

      Guo H C, Shen J X, Wang T L, Cheng C B, Yao H Y, Han X J, Zheng Q J. Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage[J]. Ceram. Int., 2022,48(3):3344-3350. doi: 10.1016/j.ceramint.2021.10.109

    71. [71]

      Wang Q S, Velasco L, Breitung B, Presser V. High-entropy energy materials in the age of big data: A critical guide to next-generation synthesis and applications[J]. Adv. Energy Mater., 2021,11(47)2102355. doi: 10.1002/aenm.202102355

    72. [72]

      Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G F, Anapolsky A, Hu L B. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022,376151.

    73. [73]

      WANG X, WANG R, KANG Q L, LI D Y, XU Y, GE H L, GAO F, LU Q Y. Research progress on structural design and intrinsic activity modulation of co-based oxides for lithium-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(9):1673-1689.  

    74. [74]

      ZHANG Q T, XU Z Q, SHU Q Q, LIAN F. Preparation and lithium storage properties of nitrogen, sulfur heteroatom hard carbon by pyrolysis of conjugated microporous polymers[J]. Chinese J. Inorg. Chem., 2023,39(1):45-54. doi: 10.11862/CJIC.2022.263

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(8)
  • Abstract views(589)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return