Citation: Zhen LI, An-Chen WANG, Hui-Ming YIN, Da-Peng CAO, Bao-Xiu MI. Two-step electrophoretic deposition of TiO2 photoanode for highly effective dye-sensitized solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2349-2357. doi: 10.11862/CJIC.2023.202 shu

Two-step electrophoretic deposition of TiO2 photoanode for highly effective dye-sensitized solar cells

  • Corresponding author: Da-Peng CAO, iamdpcao@njupt.edu.cn
  • Received Date: 12 May 2023
    Revised Date: 25 October 2023

Figures(10)

  • In this work, the influences of electrophoretic voltage on film deposition rate, thickness and morphology were investigated. Photoanodes and dye-sensitized solar cells (DSSC) were characterized by step profiler, optical photograph, scanning electron microscope, electrochemical impedance spectroscopy (EIS) and open-circuit voltage decay (OCVD). Increasing electrophoretic voltage can accelerate deposition rate and increase the final film thickness. However, employing excessively high voltage leads to crack formation and incomplete coverage on FTO, thereby exerting an adverse impact on the efficiency of DSSC devices. By employing a "30 V followed by 60 V" deposition method, which combines the advantages of low and high voltages, photoanodes exhibiting a synergistic effect were successfully fabricated. This approach not only reduces electrophoretic time but also yields films of superior quality, resulting in an impressive device efficiency of 7.29% without any additional modifications.
  • 加载中
    1. [1]

      ZHU L, LI P, ZHAO B. An investigation of the effect of high-pressure on charge transfer in dye-sensitized solar cells based on surface‑ enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023,43(Sup1):151-152.  

    2. [2]

      Ren Y M, Zhang D, Suo J J, Cao Y M, Eickemeyer F T, Vlachopoulos N, Zakeeruddin S M, Hagfeldt A, Gratzel M. Hydroxamic acid pre- adsorption raises the efficiency of cosensitized solar cells[J]. Nature, 2023,613:6-65.

    3. [3]

      XU D, SHEN H J, XIE J J, WANG W, YUAN H H, LI Y Y, ZHANG T, CHEN X Y, HE Y L, ZHANG Y M. Screen printing, post-processing modification and application of PEDOT: PSS thin films in dye-sensitized solar cells[J]. Acta Polymerica Sinica, 2019,50(1):36-43.  

    4. [4]

      JIANG Q S, CHEN R T, LI W B, CHENG W J, HUANG Y X, HU G. Application of transparent cobalt sulfide electrode in dye-sensitized solar cells[J]. J. Inorg. Mater., 2018,33(8):832-838.  

    5. [5]

      LI Y, ZHUANG Q C, WANG H T, WU W W, ZHAO Y L, QIANG Y H. Study on interface characteristics of surface-modified TiO2 solar cells[J]. Chinese J. Inorg. Chem., 2014,30(4):763-769. doi: 10.11862/CJIC.2014.052

    6. [6]

      RAN H L, HUANG H, MA M J, ZHAI J S, FAN J J. Performance enhancement of double-layer TiO2 composite film dye-sensitized solar cells[J]. J. Inorg. Mater., 2017,32(10):1049-1054.  

    7. [7]

      Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998,395:583-585.

    8. [8]

      XI X W, HU L H, FANG X Q, DAI S Y. Effect of TiO2 film optimization on performance of dye-sensitized solar cells[J]. Chinese J. Inorg. Chem., 2011,27(7):1353-1357.  

    9. [9]

      ZHANG A, ZHANG C M, WU W X, WANG D Y, YAO S Y, MENG T. Preparation of dye-sensitized solar cells by screen printing[J]. Spectroscopy and Spectral Analysis, 2021,41(7):2321-2324.  

    10. [10]

      Kim G S, Seo H K, Godble V P, Kim Y S, Yang O B, Shi H S. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells[J]. Electrochem. Commun., 2006,8:961-966.

    11. [11]

      Ahmad M S, Pandey A K, Rahim N A. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review[J]. Renew. Sust. Energ. Rev., 2017,77:89-108.

    12. [12]

      Hamadanian M, Gravand A, Jabbari V. High performance dye-sensitized solar cells (DSSCs) achieved via electrophoretic technique by optimizing of photoelectrode properties[J]. Mater. Sci. Semicond. Process., 2013,16:1352-1359.

    13. [13]

      Kawakita M, Uchikoshi T, Besra L, Suzuki T S, Kawakita J, Sakka Y. Formation of crystalline-oriented titania thin films on ITO glass electrodes by EPD in a strong magnetic field[J]. Key Eng. Mater., 2009,412:143-148.

    14. [14]

      Chen H W, Liang C P, Huang H S, Chen J G, Vittal R, Lin C Y, Wu K W, Ho K C. Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells[J]. Chem. Commun., 2011,47:8346-8348.

    15. [15]

      Shikoh A S, Ahmad Z, Touati F, Shakoor R A, Al-Muhtaseb S A. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques[J]. Ceram. Int., 2017,43:10540-10545.

    16. [16]

      Yum J H, Kim S S, Kim D Y, Sung Y E. Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells[J]. J. Photochem., 2005,173:1-6.

    17. [17]

      Chiu W H, Lee K M, Hsieh W F. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions[J]. J. Power Sources, 2011,196:3683-3687.

    18. [18]

      Shakir S, Abd-ur-Rehman H M, Zahid R, Lwamoto M, Periasamy V. Multistep electrophoretic deposition of TiO2 film and its surface modification for dye sensitized solar cells[J]. J. Alloy. Compd., 2020,837155579.

    19. [19]

      Lindstrom H, Magnusson E, Holmberg A, Södergren S, Lindquist S E, Hagfeldt A. A new method for manufacturing nanostructured electrodes on glass substrates[J]. Sol. Energy Mater Sol. Cells, 2002,73:91-101.

    20. [20]

      Jarernboon W, Pimanpang S, Maensiri S, Swatsitang E, Amornkitbamrung V. Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application[J]. Thin Solid Films, 2009,517:4663-4667.

    21. [21]

      Grinis L, Dor S, Ofir A, Zaban A. Electrophoretic deposition and compression of titania nanoparticle films for dye‑sensitized solar cells[J]. J. Photochem. Photobiol. A, 2008,198:52-59.

    22. [22]

      Kao M C, Chen H Z, Young S L, Kung C Y, Lin C C. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells[J]. Thin Solid Films, 2009,517:5096-5099.

    23. [23]

      Cao D P, Yin H M, Yu X H, Zhang J B, Jiao Y F, Zheng W, Mi B X, Gao Z Q. Role of modifying photoanodes by organic titanium on charge collection efficiency enhancement in dye-sensitized solar cells[J]. Adv. Eng. Mater., 2020,221901071.

    24. [24]

      Joshy D, Narendranath S B, Ismail Y A, Periyat P. Recent progress in one dimensional TiO2 nanomaterials as photoanode in dye-sensitized solar cells[J]. Nanoscale Adv., 2022,39:112-190.

    25. [25]

      XIAO Y M, WU J H, YUE G T, LIN J M, HUANG M L, FAN L Q, LAN Z. Preparation of single crystal titanium dioxide nanowire and its application in flexible dye-sensitized solar cells[J]. Acta Phys.-Chim. Sin., 2012,28(3):578-584.  

    26. [26]

      Khir H, Pandey A K, Saidur R, Shakeel A M, Abd R N, Dewika M, Samykano M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells[J]. Sustain. Energy Technol., 2022,53102745.

    27. [27]

      GUO Z K, WANG S S, ZHANG X H, GUAN Z S, HE T. Application of TiO2 nanotube arrays with different structures and morphologies in dye-sensitized solar cells[J]. Chin. Sci. Bull., 2013,58(24):2479-2486.  

    28. [28]

      HUANG X W, DENG J Y, XU L, SHEN P, ZHAO B, TAN S T. Preparation of polymer/TiO2 hybrid nanofibers microporous membranes and its application in dye-sensitized solar cells[J]. Acta Chim. Sinica, 2012,70(15):1604-1610.  

    29. [29]

      YANG Y H, LÜ Y X, LI H, ZHAN F Q. Design of photoanode with TiO2-spiked sphere scattering center and its application in dye-sensitized solar cells[J]. Chinese J. Inorg. Chem., 2016,32(10):1802-1808. doi: 10.11862/CJIC.2016.235

    30. [30]

      ZHANG H, LI J P, CHEN W L, WANG E B. Application of sandwich type polyacid modified TiO2 in dye-sensitized solar cells[J]. Chin. Sci. Bull., 2018,63(32):3333-3341.

    31. [31]

      YANG J L. Interfacial charge transfer mechanism of dye-sensitized solar cells[J]. Acta Phys. -Chim. Sin., 2016,32(7):1554-1555.  

    32. [32]

      Beedri N I, Baviskar P K, Supekar A T, Inamuddin , Jadkar S R, Pathan H M. Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell[J]. Int. J. Mod. Phys. B, 2018,321840046.

    33. [33]

      Naik P, Su R, Elmorsy M R, El-Shafei A M, Adhikari A V. New di-anchoring A-π-D-π-A configured organic chromophores for DSSC application: Sensitization and co-sensitization studies[J]. Photochem. Photobiol. Sci., 2018,17:302-314.

    34. [34]

      Alizadeh A, Roudgar-Amoli M, Bonyad-Shekalgourabi S M, Shariatinia Z, Mahmoudi M, Saadat F. Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review[J]. Renew. Sustain. Energ. Rev., 2022,157112047.

    35. [35]

      Parikh N, Narayanan S, Kumari H, Prochowicz D, Kalam A, Satapathi S, Akin S, Tavakoli M M. Recent progress of light intensity-modulated small perturbation techniques in perovskite solar cells[J]. Phys. Status Solidi RRL, 2022,162100510.

    36. [36]

      Xu F, Sun L T. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells[J]. Energy Environ. Sci., 2011,4:818-841.

    37. [37]

      Roose B, Pathak S, Steiner U. Doping of TiO2 for sensitized solar cells[J]. Chem. Soc. Rev., 2015,44:8326-8349.

    38. [38]

      Cao D P, Wang A C, Yu X H, Yin H M, Zhang J B, Mi B X, Gao Z Q. Room-temperature preparation of TiO2/graphene composite photoanodes for efficient dye-sensitized solar cells[J]. J. Colloid Interface Sci., 2021,586:326-334.

    39. [39]

      Vesce L, Riccitelli R, Soscia G, Brown T M, Carlo A D, Reale A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment[J]. J. Non-Cryst. Solids, 2010,356:1958-1961.

    40. [40]

      Ito S, Liska P, Comte P, Charvet R L, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells[J]. Chem. Commun., 2005,34:4351-4353.

    41. [41]

      Ghannadi S, Abdizadeh H, Rakhsha A, Golobostanfard M R. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell[J]. Mater. Chem. Phys., 2021,258123893.

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    18. [18]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(4)
  • Abstract views(334)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return