Citation: Xing-Han CHEN, Min SHU, Feng LI, Rui ZHANG, Jian LIU. Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2279-2286. doi: 10.11862/CJIC.2023.196 shu

Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers

Figures(7)

  • In this work, novel terpyridine-Fe(Ⅱ) coordination polymers were prepared by introducing an aromatic ring as a π-spacer between two terpyridine units to construct multi-dented ligands, which were coordinated with Iron(Ⅱ) tetrafluoroborate hexahydrate. The electrochromic properties of the terpyridine-Fe(Ⅱ) coordination polymers were investigated. The results indicated that the introduction of fluorine atoms on the aromatic ring had a certain effect on their electrochromic properties. Among them, coordination polymer Fe-F2 prepared derived from the ligand F2 containing two fluorine atoms showed excellent electrochromic properties (optical contrast up to 69%, response time as short as 0.5 s, coloration efficiency over 320 cm2·C-1).
  • 加载中
    1. [1]

      Chen H J, Wang W Y, Zhu J J, Han Y Y, Liu J. Electropolymerization of D-A type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance[J]. Polymer, 2022,240124485. doi: 10.1016/j.polymer.2021.124485

    2. [2]

      Fu W A, Chen H J, Han Y Y, Wang W Y, Zhang R, Liu J. Electropolymerization of D-A-D type monomers consisting of triphenylamine and substituted quinoxaline moieties for electrochromic devices[J]. New J. Chem., 2021,45(40):19082-19087. doi: 10.1039/D1NJ04074J

    3. [3]

      Zhu J J, Wang W Y, Chen H J, Han Y Y, Liu J. Electropolymerization of D-A-D type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors[J]. J. Solid State Chem., 2022,307122739. doi: 10.1016/j.jssc.2021.122739

    4. [4]

      Cong S, Geng F X, Zhao Z G. Tungsten oxide materials for optoelectronic applications[J]. Adv. Mater., 2016,28(47):10518-10528. doi: 10.1002/adma.201601109

    5. [5]

      Guo W B, Cong Z F, Guo Z H, Zhang P P, Chen Y H, Hu W G, Wang Z L, Pu X. Multifunctional self-charging electrochromic supercapacitors driven by direct-current triboelectric nanogenerators[J]. Adv. Funct. Mater., 2021,31(36)2104348. doi: 10.1002/adfm.202104348

    6. [6]

      Jo M H, Kim K H, Ahn H J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices[J]. Chem. Eng. J., 2022,445136826. doi: 10.1016/j.cej.2022.136826

    7. [7]

      Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties[J]. Coord. Chem. Rev., 2019,389:1-18. doi: 10.1016/j.ccr.2019.03.009

    8. [8]

      Lu H C, Kao S Y, Yu H F, Chang T H, Kung C W, Ho K C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids[J]. ACS Appl. Mater. Interfaces, 2016,8(44):30351-30361. doi: 10.1021/acsami.6b10152

    9. [9]

      Lo C K, Shen D E, Reynolds J R. Fine-tuning the color hue of π-conjugated black-to-clear electrochromic random copolymers[J]. Macromolecules, 2019,52(17):6773-6779. doi: 10.1021/acs.macromol.9b01443

    10. [10]

      Sato T, Higuchi M. An alternately introduced heterometallo-supramolecular polymer: synthesis and solid-state emission switching by electrochemical redox[J]. Chem. Commun., 2013,49(46):5256-5258. doi: 10.1039/c3cc41176a

    11. [11]

      XING J N, SHU M, WANG W Y, ZHANG R, LIU J. Synthesis and properties of electrochromic material based on phenanthroline Fe(Ⅱ) complex with triphenylamine moiety[J]. Chinese J. Inorg. Chem., 2021,37(10):1847-1852.  

    12. [12]

      Malik N, Dov N E, de Ruiter G, Lahav M, van der Boom M E. On-surface self-assembly of stimuli-responsive metallo-organic films: Automated ultrasonic spray-coating and electrochromic devices[J]. ACS Appl. Mater. Interfaces, 2019,11(25):22858-22868. doi: 10.1021/acsami.9b05512

    13. [13]

      Schott M, Szczerba W, Posset U, Vuk A S, Beck M, Riesemeier H, Thünemann A F, kurth D G. In operando XAFS experiments on flexible electrochromic devices based on Fe(Ⅱ)-metallo-supramolecular polyelectrolytes and vanadium oxide[J]. Sol. Energy Mater. Sol. Cells, 2016,147:61-67. doi: 10.1016/j.solmat.2015.10.015

    14. [14]

      Shu M, Tao J Y, Han Y Y, Fu W A, Li X W, Zhang R, Liu J. Molecular engineering of terpyridine-Fe(Ⅱ) coordination polymers consisting of quinoxaline-based π-spacers toward enhanced electrochromic performance[J]. Polymer, 2022,256125231. doi: 10.1016/j.polymer.2022.125231

    15. [15]

      Xing J N, Yue Y F, Zhang R, Liu J. Molecular engineering of head-tail terpyridine-Fe(Ⅱ) coordination polymers employing alkyl chain linkers toward enhanced electrochromic performance[J]. Dyes Pigment., 2021,189109233. doi: 10.1016/j.dyepig.2021.109233

    16. [16]

      Mukkatt I, Mohanachandran A P, Nirmala A, Patra D, Sukumaran P A, Pillai R S, Rakhi R B, Shankar S, Ajayaghosh A. Tunable capacitive behavior in metallopolymer-based electrochromic thin film supercapacitors[J]. ACS Appl. Mater. Interfaces, 2022,14(28):31900-31910. doi: 10.1021/acsami.2c05744

    17. [17]

      Mondal S, Santra D C, Ninomiya Y, Yoshida T, Higuchi M. Dualredox system of metallo-supramolecular polymers for visible-to-near-IR modulable electrochromism and durable device fabrication[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58277-58286. doi: 10.1021/acsami.0c18109

    18. [18]

      Chen W, Xue G. Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate-ethyl ether[J]. Prog. Polym. Sci., 2005,30(7):783-811. doi: 10.1016/j.progpolymsci.2005.03.002

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(1)
  • Abstract views(440)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return