Citation: Shi-Hui ZHOU, Zhe WANG, Zhan-Hui ZHANG. Influence of charge compensation to the luminescence properties of Ba2ZnGe2O7∶Bi3+ phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2311-2316. doi: 10.11862/CJIC.2023.194 shu

Influence of charge compensation to the luminescence properties of Ba2ZnGe2O7∶Bi3+ phosphor

  • Corresponding author: Zhan-Hui ZHANG, zzhlzu@163.com
  • Received Date: 25 May 2023
    Revised Date: 28 October 2023

Figures(6)

  • In this work, two series of phosphors were prepared using high-temperature solid-state reactions: Ba2-xZnGe2O7xBi3+ (series Ⅰ) and Ba1.994-yKyZnGe2O7∶0.006Bi3+ (series Ⅱ). X-ray diffraction (XRD) analysis demonstrated that the doping of a small amount of Bi3+ and K+ did not significantly change the phase structure of the material. The fluorescence spectra of the samples were obtained using a fluorescence spectrometer. The results indicated that the luminescence colors of both series remained yellow-green despite a slight variation in the luminescence spectra with changes in composition. Excitation at 358 nm led to the phosphor exhibiting a broad emission band with its peak at 500 nm, which corresponded to the energy level transition from 3P1 to 1S0. When monitoring at 500 nm, the strongest excitation peak occurred at 358 nm, representing the energy level transition from 1S0 to 3P1. Furthermore, a shoulder peak at 320 nm was observed, indicating a charge transfer band between O2- and Bi3+. Analysis of the spectral data for series Ⅰ suggested that the optimal doping amount of Bi3+ was x=0.006. In this matrix, the substitution of Ba2+ by Bi3+ introduced an unequal substitution, leading to the generation of Ba2+ vacancies or interstitial O2- within the lattice, which had a negative impact on the luminous intensity of the material. Co-doping with K+ acted as a charge compensator, effectively cancelling out the Ba2+ vacancies or interstitial O2- by generating interstitial K+ or oxygen vacancies. Consequently, this process reduced lattice distortion and improved luminescent intensity. Further analysis of the spectral data for series Ⅱ revealed that the fully charge-compensated phosphor sample exhibited luminescent intensity about 2.5 times higher than that of the sample without K+ doping.
  • 加载中
    1. [1]

      Gupta I, Singh S, Bhagwan S, Singh D. Rare earth (RE) doped phosphors and their emerging applications: A review[J]. Ceram. Int., 2021,47(14):19282-19303. doi: 10.1016/j.ceramint.2021.03.308

    2. [2]

      Dong Q, Yang F L, Cui J, Tian Y B, Liu S F, Du F, Peng J Q, Ye X Y. Enhanced narrow green emission and thermal stability in γ-AlON: Mn2+, Mg2+ phosphor via charge compensation[J]. Ceram. Int., 2019,45(9):11868-11875. doi: 10.1016/j.ceramint.2019.03.069

    3. [3]

      Dong Q, Cui J, Tian Y B, Yang F L, Ming H, Du F, Peng J Q, Ye X Y. Tunable blue-green color emitting Al5O6N: Eu2+, Tb3+ phosphors with energy transfer for near-UV white LEDs[J]. J. Lumins., 2019,212:146-153. doi: 10.1016/j.jlumin.2019.04.042

    4. [4]

      Li J H, Yan J, Wen D W, Khan W U, Shi J X, Wu M M, Su Q, Tanner P A. Advanced red phosphors for white light-emitting diodes[J]. J. Mater. Chem. C, 2016,4(37):8611-8623. doi: 10.1039/C6TC02695H

    5. [5]

      Tiwari A, Dhoble S J. Tunable lanthanide/transition metal ion-doped novel phosphors for possible application in w-LEDs: A review[J]. Luminescence, 2020,35(1):4-33. doi: 10.1002/bio.3712

    6. [6]

      Zhou X J, Chen L N, Jiang S, Xiang G T, Li L, Tang X, Luo X B, Pang Y. Eu3+ activated LiSrVO4 phosphors: Emission color tuning and potential application in temperature sensing[J]. Dyes Pigment., 2018,151:219-226. doi: 10.1016/j.dyepig.2017.12.059

    7. [7]

      Xiang Y, Liu Z Y, Gao Y, Feng L, Zhou T, Liu M J, Zhao Y, Lai X, Bi J, Gao D J. Novel double perovskite Ca2Gd0.5Nb1-xW5x/6O6: 0.5Eu3+ red phosphors with excellent thermal stability and high color purity for white LEDs[J]. Chem. Eng. J., 2023,456140901. doi: 10.1016/j.cej.2022.140901

    8. [8]

      Dillip G R, Dhoble S J, Manoj L, Reddy C M, Raju B D P. A potential red emitting K4Ca(PO4)2: Eu3+ phosphor for white light emitting diodes[J]. J. Lumines., 2012,132(11):3072-3076. doi: 10.1016/j.jlumin.2012.06.029

    9. [9]

      Xu X X, Shao Q Y, Yao L Q, Dong Y, Jiang J Q. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications[J]. Chem. Eng. J., 2020,383123108. doi: 10.1016/j.cej.2019.123108

    10. [10]

      Khan N Z, Khan S A, Sohail M, Khan M A M, Ahmed J, Zhan L, Wang F H, Abbas M T, Xu X. Single phase multi color emitting Ca2LuTaO6: Dy3+/Eu3+ double perovskite oxide phosphors[J]. J. Am. Ceram. Soc., 2021,104(9):4911-4922. doi: 10.1111/jace.17889

    11. [11]

      Li J H, Liang Q Y, Cao Y F, Yan J, Zhou J B, Xu Y Q, Dolgov L, Meng Y Y, Shi J X, Wu M M. Layered structure produced nonconcentration quenching in a novel Eu3+-doped phosphor[J]. ACS Appl. Mater. Interfaces, 2018,10(48):41479-41486. doi: 10.1021/acsami.8b13759

    12. [12]

      Wu X L, Du L, Ren Q, Hai O. Study on the color tunability and energy transfer mechanism in Tm3+/Dy3+ co-doped LiLaSiO4 phosphors[J]. Ceram. Int., 2021,47(20):28384-28399. doi: 10.1016/j.ceramint.2021.06.256

    13. [13]

      Wang Y, Guo N, Shao B Q, Yao C F, Ouyang R Z, Miao Y Q. Adjustable photoluminescence of Bi3+ and Eu3+ in solid solution constructed by isostructural end components through composition and excitation-driven strategy[J]. Chem. Eng. J., 2021,421127735. doi: 10.1016/j.cej.2020.127735

    14. [14]

      Kang F W, Zhang H S, Wondraczek L, Yang X B, Zhang Y, Lei D Y, Peng M Y. Band-gap modulation in single Bi3+-doped yttrium-scandium-niobium vanadates for color tuning over the whole visible spectrum[J]. Chem. Mater., 2016,28(8):2692-2703. doi: 10.1021/acs.chemmater.6b00277

    15. [15]

      Dou X J, Xiang H W, Wei P L, Zhang S A, Ju G F, Meng Z M, Chen L, Hu Y H, Li Y. A novel phosphor CaZnGe2O6: Bi3+ with persistent luminescence and photo-stimulated luminescence[J]. Mater. Res. Bull., 2018,105:226-230. doi: 10.1016/j.materresbull.2018.04.047

    16. [16]

      Li M H, Wang L L, Ran W G, Liu Q Z, Ren C Y, Jiang H Y, Shi J S. Broadly tunable emission from Ca2Al2SiO7: Bi phosphors based on crystal field modulation around Bi ions[J]. New J. Chem., 2016,40(11):9579-9585. doi: 10.1039/C6NJ01755J

    17. [17]

      Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping[J]. Adv. Funct. Mater., 2018,28(29)1801131. doi: 10.1002/adfm.201801131

    18. [18]

      Wei Y, Yang H, Gao Z Y, Yun X H, Xing G C, Zhou C G, Li G G. Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7: Bi phosphor based on zinc vacancy[J]. Laser Photon. Rev., 2021,15(1)2000048. doi: 10.1002/lpor.202000048

    19. [19]

      Wu Q S, Chen X, Chen H D, Zhang H Q, Zhou J C. A novel pale-yellow Ba2ZnGe2O7: Bi3+ phosphor with site-selected excitation and small thermal quenching[J]. J. Am. Ceram. Soc., 2019,102(10):6068-6076. doi: 10.1111/jace.16477

    20. [20]

      Kaminskii A A, Bohatý L, Becker P, Liebertz J, Held P, Eichler H J, Rhee H, Hanuza J. Tetragonal Ba2MgGe2O7 - a novel multifunctional optical crystal with numerous manifestations of nonlinear-laser effects: almost sesqui-octave Stokes and anti-Stokes combs and cascaded χ(3)χ(2) lasing with involved second and third harmonic generation[J]. Laser Phys. Lett., 2008,5(12):845-868. doi: 10.1002/lapl.200810089

    21. [21]

      Mala V R, Balakrishnan P, Kennedy S M M. Effect of co-doping alkali metal ions Li+/Na+/K+ on the photoluminescence enhancement properties of the near white light emitting LiSrVO4: Dy3+ phosphor along with the optical transition probabilities by Judd-Ofelt analysis for WLEDs application[J]. Solid State Sci., 2023,138107131. doi: 10.1016/j.solidstatesciences.2023.107131

    22. [22]

      LOU B B, YIN M. Luminescence mechanism of Bi3+ doped materials: First principles studies[J]. Chinese Journal of Luminescence, 2022,43(9):1446-1458.

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(1)
  • Abstract views(343)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return