Citation: Jia-Wen WAN, Ling-Fang LONG, Dao-Yuan MA, Yun-Zheng LIU, Zi-Xiang WANG, Li-Bin XIA. Effect of MgF2 on the luminescence of Mn4+-doped germanate red phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2328-2338. doi: 10.11862/CJIC.2023.193 shu

Effect of MgF2 on the luminescence of Mn4+-doped germanate red phosphor

  • Corresponding author: Li-Bin XIA, tea_xia@126.com
  • Received Date: 20 May 2023
    Revised Date: 29 October 2023

Figures(7)

  • 3.5MgO·0.5MgF2·GeO2∶Mn4+ has been applied in the market as a red phosphor with excellent thermal stability and good luminescence performance. However, the unclear influence mechanism of MgF2 in the phosphor hinders further performance optimization and development. A series of Mn4+-activated germanate phosphors were prepared by the high-temperature solid-phase method. The variation regulation of the structure, morphology, and luminescence performance was investigated by comparing the addition of MgF2 and H3BO3 (flux). Then the luminescence influence role of MgF2 has been obtained. The study showed that the optimum sintering temperatures for the samples with MgF2, H3BO3, and without any co-solvent were 1 150, 1 250, and 1 350 ℃, respectively. The luminescence intensity at the above temperatures was also the optimum value, and the samples with MgF2 and H3BO3 exhibited a pure phase at the temperature, respectively. The crystallinity and dispersion of the phosphors were improved by adding MgF2 and H3BO3, and the positive influence of the MgF2 was better than that of the H3BO3. The Dq/B value of the phosphor with MgF2 was calculated to be 3.03, indicating Mn4+ is in an environment with a strong crystal field. The fluorescence lifetimes of the phosphors with MgF2 and H3BO3 were 0.93 and 0.75 ms, respectively. The addition of MgF2, on the one hand, plays a positive role as a co-solvent, which can be conducive to generating a pure phase and improving the crystallinity. The role is the same as the H3BO3. On the other hand, the F- ions originating from MgF2 were successfully doped into the crystal lattice confirmed by the XPS analysis, and then the crystal structure of Mg14Ge5(O, F)24 was achieved.
  • 加载中
    1. [1]

      Li Z Y, Zhang X H, Wu J, Guo R, Luo L, Xiong Y H, Wang L, Chen W. A novel inequivalent double-site substituted red phosphor Li4AlSbO6: Mn4+ with high color purity: Its structure, photoluminescence properties, and application in warm white LEDs[J]. J. Mater. Chem. C, 2021,9(38):13236-13246. doi: 10.1039/D1TC02541D

    2. [2]

      Wu J, Wang B, Liu Z Y, Zhang K, Zeng Q G. Mn4+-activated oxyfluoride K3TaOF6 red phosphor with intense zero phonon line for warm white light-emitting diodes[J]. RSC Adv., 2021,11(42):26120-26126. doi: 10.1039/D1RA05174A

    3. [3]

      LI S, GUO N, LIANG Q M, DENG H X. Red phosphors doped by Eu used in white LED[J]. Chinese J. Inorg. Chem., 2017,33(4):543-549. doi: 10.11862/CJIC.2017.044

    4. [4]

      Uheda K, Hirosaki N, Yamamoto H. Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode[J]. Phys. Status Solidi A-Appl. Mat., 2006,203(11):2712-2717. doi: 10.1002/pssa.200669576

    5. [5]

      Chen D Q, Zhou Y, Zhong J S. A review on Mn4+ activator in solids for warm white light-emitting diodes[J]. RSC Adv., 2016,6(89):86285-86296. doi: 10.1039/C6RA19584A

    6. [6]

      Liu Z, Yu M H, Liu J Q, Yu C Y, Xuan T T, Li H L. Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19: Mn4+ nanofiber phosphors[J]. Ceram. Int., 2017,43(7):5674-5679. doi: 10.1016/j.ceramint.2017.01.105

    7. [7]

      Zhong Y, Gai S J, Xia M, Gu S M, Zhang Y L, Wu X B, Wang J, Zhou N, Zhou Z. Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35: Mn4+ based on chemical unit engineering[J]. Chem. Eng. J., 2019,374:381-391. doi: 10.1016/j.cej.2019.05.201

    8. [8]

      XIN X D, WEI H W, ZHAO W H, LIU Z S, LI W X, JIAO H, JING X P. Doping and replacing effects on the luminescent properties of SrAl12O19∶Mn4+ red phosphor[J]. Chinese J. Inorg. Chem., 2016,32(7):1199-1206. doi: 10.11862/CJIC.2016.169

    9. [9]

      Zhu H M, Lin C C, Luo W Q, Shu S T, Liu Z G, Liu Y S, Kong J T, Ma E, Cao Y G, Liu R S, Chen X Y. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes[J]. Nat. Commun., 2014,54312. doi: 10.1038/ncomms5312

    10. [10]

      Takahashi T, Adachi S. Synthesis of K2SiF6: Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution[J]. Electrochem. Solid State Lett., 2009,12(8):J69-J71. doi: 10.1149/1.3148270

    11. [11]

      Shi D X, Liang Z B, Zhang X, Zhou Q, Wang Z L, Wu M M, Ye Y Q. Synthesis, structure and photoluminescence properties of a novel Rb2NaAlF6: Mn4+ red phosphor for solid-state lighting[J]. J. Lumines., 2020,226117491. doi: 10.1016/j.jlumin.2020.117491

    12. [12]

      QU Q, ZHANG W R, HE L L, JI H P. Mn4+-doped red-emitting oxyfluoride phosphors with intense zero phonon line[J]. Chinese Journal of Luminescence, 2023,44(5):786-800.  

    13. [13]

      Ming H, Zhang J F, Liu L L, Peng J Q, Du F, Ye X Y, Yang Y M, Nie H P. A novel Cs2NbOF5: Mn4+ oxyfluoride red phosphor for light-emitting diode devices[J]. Dalton Trans., 2018,47(45):16048-16056. doi: 10.1039/C8DT02817F

    14. [14]

      Wang Q, Yang Z Y, Wang H Y, Chen Z K, Yang H L, Yang J, Wang Z L. Novel Mn4+-activated oxyfluoride Cs2NbOF5: Mn4+ red phosphor for warm white light-emitting diodes[J]. Opt. Mater., 2018,85:96-99. doi: 10.1016/j.optmat.2018.08.050

    15. [15]

      Kato H, Takeda Y, Kobayashi M, Kobayashi H, Kakihana M. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn4+[J]. Front. Chem., 2018,6467. doi: 10.3389/fchem.2018.00467

    16. [16]

      Kemeny G, Haake C H. Activator center in magnesium fluorogermanate phosphors[J]. J. Chem. Phys., 1960,33(3):783-789. doi: 10.1063/1.1731262

    17. [17]

      Luke T. Temperature dependence of the emission of an improved manganese-activated magnesium germanate phosphor[J]. Journal of The Optical Society of America, 1950,40(9):579-583. doi: 10.1364/JOSA.40.000579

    18. [18]

      Omrane A, Ossler F, Aldén M, Svenson J, Pettersson J B C. Surface temperature of decomposing construction materials studied by laser-induced phosphorescence[J]. Fire Mater., 2005,29(1):39-51. doi: 10.1002/fam.876

    19. [19]

      Omrane A, Juhlin G, Ossler F, Aldén M. Temperature measurements of single droplets by use of laser-induced phosphorescence[J]. Appl. Optics, 2004,43(17):3523-3529. doi: 10.1364/AO.43.003523

    20. [20]

      Von Dreele R B, Bless P W, Kostiner E, Hughes R E. The crystal structure of magnesium germanate: A reformulation of Mg4GeO6 as Mg28Ge10O48[J]. J. Solid State Chem., 1970,2(4):612-618. doi: 10.1016/0022-4596(70)90058-7

    21. [21]

      Bless P W, Von Dreele R B, Kostiner E, Hughes R E. Anion and cation defect structure in magnesium fluorogermanate[J]. J. Solid State Chem., 1972,4(2):262-268. doi: 10.1016/0022-4596(72)90115-6

    22. [22]

      Okamoto S, Yamamoto H. Luminescent-efficiency improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO·0.5MgF2GeO2: Mn4+ deep-red phosphors for light emitting diodes[J]. J. Electrochem. Soc., 2010,157(3):J59-J63. doi: 10.1149/1.3276089

    23. [23]

      Yuan L L, Zhang X S, Xu J P, Sun J, Jin H, Liu X J, Li L L. Influence of Al3+ doping on the energy levels and thermal property of the 3.5MgO·0.5MgF2·GeO2: Mn4+ red-emitting phosphor[J]. Chin. Phys. B, 2015,24(8):553-557.

    24. [24]

      Ali A, Chepyga L M, Khanzada L S, Osvet A, Brabec C J, Batentschuk M. Effect of water vapor content during the solid state synthesis of manganese-doped magnesium fluoro-germanate phosphor on its chemistry and photoluminescent properties[J]. Opt. Mater., 2020,99109572. doi: 10.1016/j.optmat.2019.109572

    25. [25]

      Wang X S, Wang Z X, Song B Q, Jiang Q, Hou H L, Long L F, Xu L, Xia L B. Performance improvement of Sr4Al14O25: Mn4+ red emission phosphor via Na+ doping[J]. J. Alloy. Compd., 2023,937168346. doi: 10.1016/j.jallcom.2022.168346

    26. [26]

      ZHANG W, HE M T, QIAO X S, FAN X P. Research progress of Mn4+ activated typical LED red phosphors[J]. Chinese Journal of Luminescence, 2021,42(9):1345-1364.  

    27. [27]

      JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion[J]. Chinese Journal of Luminescence, 2022,43(8):1175-1187.  

    28. [28]

      Liang S S, Li G G, Dang P P, Wei Y, Lian H Z, Lin J. Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24: Mn4+: Optimized emission for w-LED and thermometry applications[J]. Adv. Opt. Mater., 2019,7(12)1900093.

    29. [29]

      Noh M, Yoon D H, Kim C H, Lee S J. Organic solvent-assisted synthesis of the K3SiF7: Mn4+ red phosphor with improved morphology and stability[J]. J. Mater. Chem. C, 2019,7(47):15014-15020.

    30. [30]

      Yang Z B, Wang Z J, Zheng M J, Wang X J, Cui J, Yao Y, Cao L W, Zhang M Y, Suo H, Li P L. Excitation selective thermal characteristics of Mg28Ge7.55-xGaxO32F15.04: Mn4+ and application in single/dual-mode optical thermometry[J]. Mater. Today Commun., 2021,28102660.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    17. [17]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(3)
  • Abstract views(304)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return