Citation: Lin-Tao YU, Qi-Yang LI, Zhi SHEN, Wen-Jun Lü, Qiang ZHAO. Synthesis, fluorescence, and magnetic characterization of nicotinic acid ligand-based dysprosium, holmium, erbium, and thulium complexes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2181-2187. doi: 10.11862/CJIC.2023.187 shu

Synthesis, fluorescence, and magnetic characterization of nicotinic acid ligand-based dysprosium, holmium, erbium, and thulium complexes

  • Corresponding author: Qiang ZHAO, zhaoqiang0522@126.com
  • Received Date: 31 May 2023
    Revised Date: 28 September 2023

    Fund Project: 河南省青年骨干教师资助项目 2020GGJS180南阳师范学院培育项目 2023PY001

Figures(6)

  • Four isomorphic rare earth complexes[M(Hcpna)(cpna)(H2O)3]n, where M=Dy (1), Ho (2), Er (3), Tm (4), have been synthesized by a solvothermal method based on 5-(4-carboxyphenoxy)nicotinic acid ligand (H2cpna) and rare earth metal ions Dy3+, Ho3+, Er3+, and Tm3+. Single crystal X-ray diffraction analyses reveal that complexes 1, 2, 3, and 4 are isostructural, and the structures are all 1D chain structures. The complexes were characterized by IR, elemental analysis, and powder X-ray diffraction, while the fluorescence and magnetic properties of the complexes were studied. The fluorescence test results show that the fluorescence intensity of complexes 1-4 were all lower than that of the H2cpna ligand. The magnetism of complexes 1-4 were studied in the 2-300 K range at 1 kOe dc field. The χmT values of complexes 1, 2, 3, and 4 were 14.04, 14.15, 11.08, and 6.83 cm3·mol-1·K respectively at room temperature.
  • 加载中
    1. [1]

      Martins V, Xu J, Wang X L, Chen K Z, Hung I A, Gan Z H, Gervais C, Bonhomme C, Jiang S J, Zheng A M, Lucier B E G, Huang Y N. Higher magnetic fields, finer MOF structural information: 17O solid-state NMR at 35.2 T[J]. J. Am. Chem.Soc., 2020,142:14877-14889. doi: 10.1021/jacs.0c02810

    2. [2]

      Baranets S, Bobev S. Caught in action. The late rare earths thulium and lutetium substituting aluminum atoms in the structure of Ca14AlBi11[J]. J. Am. Chem. Soc., 2021,143:65-68. doi: 10.1021/jacs.0c11026

    3. [3]

      Lin L, Li L H, Wu C, Huang Z P, Humphrey M G, Zhang C. Incorporating rare-earth cations with moderate electropositivity into iodates for the optimized second-order nonlinear optical performance[J]. Inorg. Chem. Front., 2020,7:2736-2746. doi: 10.1039/D0QI00162G

    4. [4]

      SUN W Y. Coordination chemistry. 2nd ed. Beijing: Chemical Industry Press, 2010: 123-126

    5. [5]

      HUANG J X, ZHAO H, LIU S Q, ZHANG J J. Two-dimensional luminescent coordination polymer based on dinuclear {Zn2(COO)4} second buildings units: Crystal structure and detection of Fe3+[J]. Chinese J. Inorg. Chem., 2021,37(8):1513-1518.  

    6. [6]

      Thielemann D T, Wagner A T, Rösch E, Kölmel D K, Heck J G, Rudat B, Neumaier M, Feldmann C, Schepers U, Bräse S, Roesky P W. Luminescent cell-penetrating pentadecanuclear lanthanide clusters[J]. J. Am. Chem. Soc., 2013,135:7454-7457. doi: 10.1021/ja403539t

    7. [7]

      Liu Y C, Lin P, Du S W. Two novel homochiral enantiomorphicanic 3D metal-organic frameworks: Synthesis, crystal structure, luminescent and SHG properties[J]. Chin. J. Struct. Chem., 2013,10:1509-1516.

    8. [8]

      Li H C, Li M F, He C, DUAN C Y. Construction of a noble-meta-free nickel metal-organic macrocycle for photocatalytic hydrogen production[J]. Chinese J. Inorg. Chem., 2018,34(1):11-19.  

    9. [9]

      Allendorf M D, Bauer C A, Bhakta R K. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38:1330-1352. doi: 10.1039/b802352m

    10. [10]

      Liu S J, Han S D, Zhao J P, Xu J L, Bu X H. In-situ synthesis of molecular magnetorefrigerant materials[J]. Coord. Chem. Rev., 2019,394:39-52. doi: 10.1016/j.ccr.2019.05.009

    11. [11]

      Gao X S, Ding M J, Zhang J, Zhao L D, Ren X M. Phase selectivity and tunable photophysical nature of rare earth metal-organic frameworks of EuxY1-x-PTC (H3PTC=2, 4, 6-pyridine tricarboxylic acid; x= 0-1)[J]. Dalton Trans., 2020,49:14985-14994. doi: 10.1039/D0DT03150J

    12. [12]

      Gu J Z, Liang X X, Cai Y, Wu J, Shi Z F, Kirillov A M. Hydrothermal assembly, structures, topologies, luminescence, and magnetism of a novel series of coordination polymers driven by a trifunctional nicotinic acid building block[J]. Dalton Trans., 2017,46:10908-10925. doi: 10.1039/C7DT01742A

    13. [13]

      Shen Z, Zhao Q, Xie H Q, Feng Y Q, Chen S Y, Shi Z. Synthesis, optical and magnetic research of nicotinic acid ligand Zn, Cd, Mn and Co complexes[J]. J. Solid State Chem., 2021,302:122437-122443. doi: 10.1016/j.jssc.2021.122437

    14. [14]

      Sheldrick G M. SADABS, Area-detector absorption correction. Siemens Industrial Automation, Inc., Madison, WI, 2001.

    15. [15]

      Sheldrick G M. SHELXL-2018, Program for X-ray crystal structure solution. University of Göttingen, Germany, 2018.

    16. [16]

      Chen G J, Gao C Y, Tian J L, Tang J K, Gu W, Liu X. Coordination-perturbed single-molecule magnet behavior of mononuclear dysprosium complexes[J]. Dalton Trans., 2011,40:5579-5583. doi: 10.1039/c1dt10050e

    17. [17]

      Zhang Z Q, Wang P Y, Rong HW, Li L W. Structural and cryogenic magnetic properties of RE2Ni2In (RE=Pr, Nd, Dy and Ho) compounds[J]. Dalton Trans., 2019,48:17792-17799. doi: 10.1039/C9DT03245B

    18. [18]

      Rasamsetty A, Das C, Sañudo E C, Shanmugam M, Baskar V. Effect of coordination geometry on the magnetic properties of a series of Ln2 and Ln4 hydroxo clusters[J]. Dalton Trans., 2018,47:1726-1738. doi: 10.1039/C7DT00172J

    19. [19]

      Latendresse T P, Vieru V, Upadhyay A, Bhuvanesh N S, Chibotaru L F, Nippe M. Trends in trigonal prismatic Ln-[1] ferrocenophane complexes and discovery of a Ho3+ single-molecule magnet[J]. Chem. Sci, 2020,11:3936-3951. doi: 10.1039/D0SC01197E

    20. [20]

      Gavrikov AV, Koroteev P S, Efimov N N, Dobrokhotova Z V, Ilyukhin A B, Kostopoulos A K, Ariciub A M, Novotortsev V M. Novel mononuclear and 1D-polymeric derivatives of lanthanides and (η6-benzoic acid) tricarbonylchromium: Synthesis, structure and magnetism[J]. Dalton Trans., 2017,46:3369-3380. doi: 10.1039/C6DT04895A

    21. [21]

      Wang J, Miao H, Xiao Z X, Zhou Y, Deng L D, Zhang Y Q, Wang X Y. Syntheses, structures and magnetic properties of the lanthanide complexes of the pyrimidyl-substituted nitronyl nitroxide radical[J]. Dalton Trans., 2017,46:10452-10461. doi: 10.1039/C7DT01037K

    22. [22]

      Huizi-Rayo U, Zabala-Lekuona A, Terenzi A, Cruz C. M, Cuerva J M, Rodríguez-Diéguez A, García J A, Seco J M, Sebastian E S, Cepeda J. Influence of thermally induced structural transformations on the magnetic and luminescence properties of tartrate-based chiral lanthanide organic-frameworks[J]. J. Mater. Chem. C, 2020,8:8243-8256. doi: 10.1039/D0TC00736F

    23. [23]

      Anwar M U, Dawe L N, Tandon S S, Bungec S D, Thompson L K. Polynuclear lanthanide (Ln) complexes of a tri-functional hydrazone ligand mononuclear (Dy), dinuclear (Yb, Tm), tetranuclear (Gd), and hexanuclear (Gd, Dy, Tb) examples[J]. Dalton Trans., 2013,42:7781-7794. doi: 10.1039/c3dt32732a

    24. [24]

      Kahn O. Molecular magnetism. Weinheim, New York: VCH-Verlag, 1993: 43-51

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    6. [6]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    7. [7]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    14. [14]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    17. [17]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    18. [18]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    19. [19]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    20. [20]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

Metrics
  • PDF Downloads(0)
  • Abstract views(283)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return