Citation: Hong-Jian LI, Jun GU, Xiao-Fei SHI, Fu-Liang LIU, Xiao-Tao CHEN. High CO-tolerant intermetallic PtBi nanoplates for methanol electrooxidation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2074-2082. doi: 10.11862/CJIC.2023.185 shu

High CO-tolerant intermetallic PtBi nanoplates for methanol electrooxidation

  • Corresponding author: Hong-Jian LI, 18380235038@163.com
  • Received Date: 23 April 2023
    Revised Date: 17 October 2023

Figures(8)

  • We prepared an intermetallic PtBi nanoplate with high CO tolerance by thermal injection. The prepared intermetallic PtBi nanoplates showed excellent catalytic performance and stability for methanol oxidation reaction (MOR). The peak mass activity was up to 4.09 A·mgPt-1, which was nearly 3.2 times that of commercial Pt/C. After the current-time (I-t) stability test, the property decreased by only 5.7%, much lower than commercial Pt/C. CO-Stripping curves and evolution of cyclic voltammetric (CV-Evolution) curves confirmed high CO tolerance of inter-metallic PtBi nanoplates.
  • 加载中
    1. [1]

      CHANG L Y, WANG R Z. Research progress and design strategy of membrane electrode assembly for high-performance proton exchange membrane fuel cell[J]. Journal of Beijing University of Technology, 2022,43(3):345-354.  

    2. [2]

      Bu L Z, Liang J S, Ning F D, Huang J, Huang B L, Sun M Z, Zhan C H, Ma Y H, Zhou X C, Li Q, Huang X Q. Low-coordination trimetallic PtFeCo nanosaws for practical fuel cells[J]. Adv. Mater., 2023,35(11)2208672. doi: 10.1002/adma.202208672

    3. [3]

      Wang X P, Xi S B, Lee W S V, Huang P R, Cui P, Zhao L, Hao W C, Zhao X S, Wang Z B, Wu H J, Wang H, Diao C Z, Borgna A, Du Y H, Yu Z G, Pennycook S, Xue J M. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon[J]. Nat. Commun., 2020,11(1)4647. doi: 10.1038/s41467-020-18459-9

    4. [4]

      Chen X T, Granda-Marulanda L P, McCrum I T, Koper M T M. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction[J]. Nat. Commun., 2022,13(1)38. doi: 10.1038/s41467-021-27793-5

    5. [5]

      Bao Y F, Liu H, Liu Z, Wang F L, Feng L G. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation[J]. Appl. Catal. B-Environ., 2020,274119106. doi: 10.1016/j.apcatb.2020.119106

    6. [6]

      Tian X L, Lu X F, Xia B Y, Lou X W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies[J]. Joule, 2020,4(1):45-68. doi: 10.1016/j.joule.2019.12.014

    7. [7]

      Chang J F, Wang G Z, Li C, He Y Q, Zhu Y M, Zhang W, Sajid M, Kara A, Gu M, Yang Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells[J]. Joule, 2023,7(3):587-602. doi: 10.1016/j.joule.2023.02.011

    8. [8]

      Wang K L, Huang D Y, Guan Y C, Liu F, He J, Ding Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction[J]. ACS Catal., 2021,11(23):14428-14438. doi: 10.1021/acscatal.1c04424

    9. [9]

      Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis[J]. Nano Lett., 2020,20(3):1974-1979. doi: 10.1021/acs.nanolett.9b05251

    10. [10]

      Zhang S, Zeng Z C, Li Q Q, Huang B L, Zhang X Y, Du Y P, Yan C H. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy Environ. Sci., 2021,14(11):5911-5918. doi: 10.1039/D1EE02433G

    11. [11]

      Xia T Y, Zhao K, Zhu Y Q, Bai X Y, Gao H, Wang Z Y, Gong Y, Feng M L, Li S F, Zheng Q, Wang S G, Wang R M, Guo H Z. Mixed-dimensional Pt-Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells[J]. Adv. Mater., 2023,35(2)2206508. doi: 10.1002/adma.202206508

    12. [12]

      Shen T, Gong M X, Xiao D D, Shang T T, Zhao X, Zhang J, Wang D L. Engineering location and supports of atomically ordered L10-PdFe intermetallics for ultra-anticorrosion electrocatalysis[J]. Adv. Funct. Mater., 2022,32(35)2203921. doi: 10.1002/adfm.202203921

    13. [13]

      Zhao T H, Wang G J, Gong M X, Xiao D D, Chen Y, Shen T, Lu Y, Zhang J, Xin H L, Li Q, Wang D L. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction[J]. ACS Catal., 2020,10(24):15207-15216. doi: 10.1021/acscatal.0c03938

    14. [14]

      Wang X C, Liu Y, Ma X Y, Chang L Y, Zhong Q X, Pan Q, Wang Z Q, Yuan X L, Cao M H, Lyu F L, Yang Y Y, Chen J X, Sham T K, Zhang Q. The role of bismuth in suppressing the CO poisoning in alkaline methanol electrooxidation: Switching the reaction from the CO to formate pathway[J]. Nano Lett., 2023,23(2):685-693. doi: 10.1021/acs.nanolett.2c04568

    15. [15]

      Chen Y J, Pei J J, Chen Z, Li A, Ji S F, Rong H P, Xu Q, Wang T, Zhang A J, Tang H L, Zhu J F, Han X D, Zhuang Z B, Zhou G, Wang D S. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation[J]. Nano Lett., 2022,22(18):7563-7571. doi: 10.1021/acs.nanolett.2c02572

    16. [16]

      Wu X Q, Jiang Y, Yan Y C, Li X, Luo S, Huang J B, Li J J, Shen R, Yang D R, Zhang H. Tuning surface structure of Pd3Pb/PtnPb nano-crystals for boosting the methanol oxidation reaction[J]. Adv. Sci., 2019,6(24)1902249. doi: 10.1002/advs.201902249

    17. [17]

      Shen T, Wang S, Zhao T H, Hu Y Z, Wang D L. Recent advances of single-atom-alloy for energy electrocatalysis[J]. Adv. Energy Mater., 2022,12(39)2201823. doi: 10.1002/aenm.202201823

    18. [18]

      Ji X L, Lee K T, Holden R, Zhang L, Zhang J J, Botton G A, Couillard M, Nazar L F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes[J]. Nat. Chem., 2010,2(4):286-293. doi: 10.1038/nchem.553

    19. [19]

      Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vázquez-Alvarez T, Angelo A C D, DiSalvo F J, Abruña H D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications[J]. J. Am. Chem. Soc., 2004,126(12):4043-4049. doi: 10.1021/ja038497a

    20. [20]

      Liu Y C, Li X H, Shi Y, Wang Y J, Zhao X J, Gong X Y, Cai R, Song G S, Chen M, Zhang X B. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy[J]. Nanoscale, 2021,13(33):14245-14253. doi: 10.1039/D1NR02561A

    21. [21]

      Luo S P, Chen W, Cheng Y, Song X, Wu Q L, Li L X, Wu X T, Wu T H, Li M R, Yang Q, Deng K R, Quan Z W. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation[J]. Adv. Mater., 2019,31(40)1903683. doi: 10.1002/adma.201903683

    22. [22]

      Yang S, Lee H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation[J]. ACS Catal., 2013,3(3):437-443. doi: 10.1021/cs300809j

    23. [23]

      Huang W J, Wang H T, Zhou J G, Wang J, Duchesne P N, Muir D, Zhang P, Han N, Zhao F P, Zeng M, Zhong J, Jin C H, Li Y G, Lee S T, Dai H J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene[J]. Nat. Commun., 2015,610035. doi: 10.1038/ncomms10035

    24. [24]

      Chen G J, Dai Z F, Sun L, Zhang L, Liu S, Bao H W, Bi J L, Yang S C, Ma F. Synergistic effects of platinum-cerium carbonate hydroxides-reduced graphene oxide on enhanced durability for methanol electro-oxidation[J]. J. Mater. Chem. A, 2019,7(11):6562-6571. doi: 10.1039/C9TA00226J

    25. [25]

      Zhang W Q, Yang J Z, Lu X M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids[J]. ACS Nano, 2012,6(8):7397-7405. doi: 10.1021/nn302590k

    26. [26]

      Ren F F, Wang C Q, Zhai C Y, Jiang F X, Yue R R, Du Y K, Yang P, Xu J K. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium[J]. J. Mater. Chem. A, 2013,1(24):7255-7261. doi: 10.1039/c3ta11291h

    27. [27]

      Zhang Z C, Luo Z M, Chen B, Wei C, Zhao J, Chen J Z, Zhang X, Lai Z C, Fan Z X, Tan C L, Zhao M T, Lu Q P, Li B, Zong Y, Yan C C, Wang G X, Xu Z C J, Zhang H. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation[J]. Adv. Mater., 2016,28(39):8712-8717. doi: 10.1002/adma.201603075

    28. [28]

      Lou Y, Li C G, Gao X D, Bai T Y, Chen C L, Huang H, Liang C, Shi Z, Feng S H. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes[J]. ACS Appl. Mater. Interfaces, 2016,8(25):16147-16153. doi: 10.1021/acsami.6b05350

    29. [29]

      Qi Z Y, Xiao C X, Liu C, Goh T W, Zhou L, Maligal-Ganesh R, Pei Y C, Li X L, Curtiss L A, Huang W Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction[J]. J. Am. Chem. Soc., 2017,139(13):4762-4768. doi: 10.1021/jacs.6b12780

    30. [30]

      Guo K, Liu Y, Han M, Xu D D, Bao J C. Highly branched ultrathin Pt-Ru nanodendrites[J]. Chem. Commun., 2019,55(74):11131-11134. doi: 10.1039/C9CC05686F

    31. [31]

      Lu S Q, Li H M, Sun J Y, Zhuang Z B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles[J]. Nano Res., 2018,11(4):2058-2068. doi: 10.1007/s12274-017-1822-x

    32. [32]

      Liu G G, Zhou W, Ji Y R, Chen B, Fu G T, Yun Q B, Chen S M, Lin Y X, Yin P F, Cui X Y, Liu J W, Meng F Q, Zhang Q H, Song L, Gu L, Zhang H. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation[J]. J. Am. Chem. Soc., 2021,143(29):11262-11270. doi: 10.1021/jacs.1c05856

    33. [33]

      Chen L, Zhou L Z, Lu H B, Zhou Y Q, Huang J L, Wang J, Wang Y, Yuan X L, Yao Y. Shape-controlled synthesis of planar PtPb nano-plates for highly efficient methanol electro-oxidation reaction[J]. Chem. Commun., 2020,56(64):9138-9141. doi: 10.1039/D0CC03704D

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(9)
  • Abstract views(470)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return