Citation: You-Zhu YU, Yan-Ru ZHANG, Yu-Hua GUO, Zhong-Yuan ZHOU, Jing WU, Shu-Han ZHANG, Yang CHEN, Yao-Dong DONG. Syntheses and photoelectric properties of titanium oxo clusters assembled by salicylaldoxime and acetohydroxamic acid[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2231-2239. doi: 10.11862/CJIC.2023.184 shu

Syntheses and photoelectric properties of titanium oxo clusters assembled by salicylaldoxime and acetohydroxamic acid

  • Corresponding author: You-Zhu YU, 119yyz@163.com
  • Received Date: 29 March 2023
    Revised Date: 28 September 2023

Figures(6)

  • In this work, by the reaction of salicylaldoxime (H2Saox), isobutyric acid (HiBuac), and Ti(OiPr)4 the hexanuclear titanium oxo cluster (TOC) of[Ti6(μ3-O)4(Saox)2(iBuac)4(OiPr)8] (1) was solvothermally synthesized, and by the reaction of acetohydroxamic acid (H2Ahox), phenylphosphonic acid (PhPO3H2) and Ti(OiPr)4 the octa-nuclear TOC of[Ti8(μ3-O)2(Ahox)2(PhPO3)4(OiPr)16] (2) was prepared. Both of them were characterized by IR, elemental analyses, and single-crystal X-ray diffraction. Spectral experiments indicate that the two complexes have absorptions in the visible region. The band gaps of complexes 1 and 2 were 2.43 and 2.61 eV respectively. Complex 2 is the first H2Ahox-based TOCs that showed photocatalytic H2 evolution activity with the rate of 140.2 μmol·g-1·h-1.
  • 加载中
    1. [1]

      Fang W H, Zhang L, Zhang J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters[J]. Chem. Soc. Rev., 2018,47(2):404-421. doi: 10.1039/C7CS00511C

    2. [2]

      Liu Y J, Fang W H, Zhang L, Zhang J. Recent advances in heterometallic polyoxotitanium clusters[J]. Coord. Chem. Rev., 2020,404(1)213099.

    3. [3]

      Fang W H, Zhang L, Zhang J. A 3.6 nm Ti52-oxo nanocluster with precise atomic structure[J]. J. Am. Chem. Soc., 2016,138(24):7480-7483. doi: 10.1021/jacs.6b03489

    4. [4]

      Zhu Q Y, Dai J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands[J]. Coord. Chem. Rev., 2021,430(1)213664.

    5. [5]

      Wang C, Wang S J, Kong F G, Chen N. Ferrocene-sensitized titanium-oxo clusters with effective visible light absorption and excellent photoelectrochemical activity[J]. Inorg. Chem. Front., 2022,9(5):959-967. doi: 10.1039/D1QI01410B

    6. [6]

      Zhang G, Liu C, Long D L, Cronin L, Tung C H, Wang Y. Water-soluble pentagonal-prismatic titanium-oxo clusters[J]. J. Am. Chem. Soc., 2016,138(35):11097-11100. doi: 10.1021/jacs.6b06290

    7. [7]

      Fan Y, Cui Y, Zou G D, Duan R H, Zhang X, Dong Y X, Lv H T, Cao J T, Jing Q S. A ferrocene carboxylate-functionalized titanium-oxo-cluster: The ferrocene wheel as a sensitizer for photocurrent response[J]. Dalton Trans., 2017,46(25):8057-8064. doi: 10.1039/C7DT01756A

    8. [8]

      Wang C, Liu C, Li L J, Sun Z M. Synthesis, crystal structures, and photochemical properties of a family of heterometallic titanium oxo clusters[J]. Inorg. Chem., 2019,58(9):6312-6319. doi: 10.1021/acs.inorgchem.9b00508

    9. [9]

      Guo Y H, Yu Y Z, Shen Y H, Yang L G, Liu N N, Zhou Z Y, Niu Y S. "Three-in-one" structural-building-mode-based Ti16-type titanium oxo cluster entirely protected by the ligands benzoate and salicylhydroxamate[J]. Inorg. Chem., 2022,61(23):8685-8693. doi: 10.1021/acs.inorgchem.2c00327

    10. [10]

      YU Y Y, ZHANG Y Y, GUO Y H, ZHOU Z Y, YANG L G, LI J L, FANG L Y, QIAO K K. Preparation, syntheses, structure-regulation and photoelectric properties of 2-pyridinecarbaldehyde oxime assembled titanium oxo clusters[J]. Chinese J. Inorg. Chem., 2022,38(11):2299-2307.  

    11. [11]

      Lu D F, Kong X J, Lu T B, Long L S, Zheng L S. Heterometallic lanthanide-titanium oxo clusters: A new family of water oxidation catalysts[J]. Inorg. Chem., 2017,56(3):1057-1060. doi: 10.1021/acs.inorgchem.6b03072

    12. [12]

      Yu Y Z, Guo Y H, Zhang Y R, Liu M M, Feng Y R, Geng C H, Zhang X M. A series of silver doped butterfly-like Ti8Ag2 clusters with two Ag ions panelled on a Ti8 surface[J]. Dalton Trans., 2019,48(35):13423-13429. doi: 10.1039/C9DT02508A

    13. [13]

      Narayanam N, Chintakrinda K, Fang W H, Kang Y, Zhang L, Zhang J. Azole functionalized polyoxo-titanium clusters with sunlight-driven dye degradation applications: Synthesis, structure, and photocatalytic studies[J]. Inorg. Chem., 2016,55(20):10294-10301. doi: 10.1021/acs.inorgchem.6b01551

    14. [14]

      Benedict J B, Freindorf R, Trzop E, Cogswell J, Coppens P. Large polyoxotitanate clusters: Well-defined models for pure-phase TiO2 structures and surfaces[J]. J. Am. Chem. Soc., 2010,132(39):13669-13671. doi: 10.1021/ja106436y

    15. [15]

      Li N, Liu J J, Sun J W, Dong B X, Dong L Z, Yao S J, Xin Z, Li S L, Lan Y Q. Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO2 photoreduction[J]. Green Chem., 2020,22(16):5325-5332. doi: 10.1039/D0GC01497D

    16. [16]

      Schubert U. Titanium-oxo clusters with bi- and tridentate organic ligands: Gradual evolution of the structures from small to big[J]. Chem.-Eur. J., 2021,27(44):11239-11256. doi: 10.1002/chem.202101287

    17. [17]

      Zhang L, Fan X, Yi X, Lin X, Zhang J. Coordination-delayed-hydrolysis method for the synthesis and structural modulation of titanium-oxo clusters[J]. Acc. Chem. Res., 2022,55(21):3150-3161. doi: 10.1021/acs.accounts.2c00421

    18. [18]

      Coppens P, Chen Y, Trzop E. Crystallography and properties of polyoxotitanate nanoclusters[J]. Chem. Rev., 2014,114(19):9645-9661. doi: 10.1021/cr400724e

    19. [19]

      Gao M Y, Wang Z, Li Q H, Li D, Sun Y, Andaloussi Y H, Ma C, Deng C, Zhang J, Zhang L. Black titanium-oxo clusters with ultralow band gaps and enhanced nonlinear optical performance[J]. J. Am. Chem. Soc., 2022,144(18):8153-8161. doi: 10.1021/jacs.2c00765

    20. [20]

      Fan X, Fu H, Zhang L, Zhang J. Pyrazole-thermal synthesis: New approach towards N-rich titanium-oxo clusters with photochromic behaviors[J]. Dalton Trans., 2019,48(23):8049-8052. doi: 10.1039/C9DT01628G

    21. [21]

      Fan X, Wang J, Wu K, Zhang L, Zhang J. Isomerism in titanium-oxo clusters: Molecular anatase model with atomic structure and improved photocatalytic activity[J]. Angew. Chem. Int. Ed., 2019,131(5):1334-1337. doi: 10.1002/ange.201809961

    22. [22]

      Yu Y Z, Zhang Y R, Geng C H, Sun L, Guo Y, Feng Y R, Wang Y X, Zhang X M. Precise and wide-ranged band-gap tuning of Ti6-core-based titanium oxo clusters by the type and number of chromophore ligands[J]. Inorg. Chem., 2019,58(24):16785-16791. doi: 10.1021/acs.inorgchem.9b02951

    23. [23]

      Wang C, Wang S J, Kong F G. Calixarene-protected titanium-oxo clusters and their photocurrent responses and photocatalytic performances[J]. Inorg. Chem., 2021,60(7):5034-5041. doi: 10.1021/acs.inorgchem.1c00063

    24. [24]

      He Y P, Yuan L B, Chen G H, Lin Q P, Wang F, Zhang L, Zhang J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function[J]. J. Am. Chem. Soc., 2017,139(46):16845-16851. doi: 10.1021/jacs.7b09463

    25. [25]

      Liu C Y, Hu J Y, Zhu F, Zhan J H, Du L, Tung C H, Wang Y F. Functionalization of titanium-oxide cluster Ti17O24(OiC3H7)20 with catechols: Structures and ligand-exchange reactivities[J]. Chem.-Eur. J., 2019,25(65):14843-14849. doi: 10.1002/chem.201902601

    26. [26]

      Hou J L, Huo P, Tang Z Z, Cui L N, Zhu Q Y, Dai J. A titanium oxo cluster model study of synergistic effect of co-coordinated dye ligands on photocurrent responses[J]. Inorg. Chem., 2018,57(12):7420-7427. doi: 10.1021/acs.inorgchem.8b01050

    27. [27]

      Chen S, Fang W H, Zhang L, Zhang J. Synthesis, structures, and photocurrent responses of polyoxo-titanium clusters with oxime ligands: From Ti4 to Ti18[J]. Inorg. Chem., 2018,57(15):8850-8856. doi: 10.1021/acs.inorgchem.8b00751

    28. [28]

      Guo Y H, Yu Y Z, Niu Y S, Wang Z, Shi W Y, Wu X L. Solvothermal synthesis, crystal structure and photocurrent property of a Ti6-core-based titanium oxo cluster[J]. Chin. J. Struct. Chem., 2021,40(3):357-362.

    29. [29]

      Zheng H, Deng Y K, Ye M Y, Xu Q F, Kong X J, Long L S, Zheng L S. Lanthanide-titanium oxo clusters as the luminescence sensor for nitrobenzene detection[J]. Inorg. Chem., 2020,59(17):12404-12409. doi: 10.1021/acs.inorgchem.0c01494

    30. [30]

      Gao C, Liu C, Said A, Niu H, Wang D, Wang G, Tung C H, Wang Y. Syntheses, structures and ligand binding modes of titanium-oxide complexes of 2-picolinate[J]. Dalton Trans., 2022,51(9):3706-3712. doi: 10.1039/D1DT04170C

    31. [31]

      Zhang N, Guo Y H, Yu Y Z, Wang Z, Niu Y S, Wu X L. Solvothermal synthesis, crystal structure and luminescence property of a 1D silver(Ⅰ) coordination polymer[J]. Chin. J. Struct. Chem., 2020,39(11):2009-2015.

    32. [32]

      Tauc J. Absorption edge and internal electric fields in amorphous semiconductors[J]. Mater. Res. Bull., 1970,5(8):721-729. doi: 10.1016/0025-5408(70)90112-1

  • 加载中
    1. [1]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    2. [2]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    3. [3]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    4. [4]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    5. [5]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    13. [13]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    14. [14]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    15. [15]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    16. [16]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    17. [17]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(1)
  • Abstract views(286)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return