Citation: Guo-Li YANG, Min LI, Jian-Qing LI, Yong-Qiang CHEN, Qi YANG. Synthesis, structure, detonation performance, and catalytic property of energetic coordination polymer[Co4(HBTI)4(H2O)8][J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2188-2196. doi: 10.11862/CJIC.2023.181 shu

Synthesis, structure, detonation performance, and catalytic property of energetic coordination polymer[Co4(HBTI)4(H2O)8]

Figures(9)

  • Based on the energetic ligand 4, 5-bis(tetrazol-5-yl)imidazole (H3BTI), a novel energetic coordination polymer[Co4(HBTI)4(H2O)8] (1) was prepared under hydrothermal conditions. The crystal structure measurement indicates that 1 exhibits a tetranuclear structure with the central ion Co (Ⅱ) adopting octahedral geometry. The non-isothermal kinetic parameters of 1 were determined using two different methods including Kissinger and Ozawa-Doyle. Through the density functional theory (DFT) calculation, its explosive performance was further conducted. Additionally, its friction sensitivity and impact sensitivity were larger than 360 N and 40 J, respectively. Further-more, during the combustion decomposition process, compound 1 could effectively advance the decomposition temperature of ammonium perchlorate (AP) and 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX) by 25 and 11℃, respectively.
  • 加载中
    1. [1]

      Zhang C, Sun C G, Hu B C, Yu C M, Lu M. Synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017,355(6323):374-376. doi: 10.1126/science.aah3840

    2. [2]

      Zhang J H, Guo Z C, Song Y L, Hao W J, Peng R F, Jin B. Hydrogen bond and 3D frameworks to reconcile the conflict between safety and detonation performance in energetic metal-organic frameworks[J]. Chem. Eng. J., 2023,453(2)139726.

    3. [3]

      Ma Q, Gu H, Huang J L, Liu D B, Li J S, Fan G J. Synthesis and characterization of new melt-cast energetic salts: Dipotassium and diaminoguanidinium N, N′-dinitro-N, N′-bis(3-dinitromethyl-furazanate-4-yl)methylenediamine[J]. Propellants Explos. Pyrotech., 2018,43(1):90-95. doi: 10.1002/prep.201700164

    4. [4]

      Wu S, Li M, Yang Z Y, Xia Z Q, Liu B, Yang Q, Wei Q, Xie G, Chen S P, Gao S L, Lu J Y. Synthesis and characterization of a new energetic metal-organic framework for use in potential propellant compositions[J]. Green Chem., 2020,22(15):5050-5058. doi: 10.1039/D0GC01594F

    5. [5]

      Xu J G, Lin S J, Li X Z, Wu H F, Lu J, Wang W F, Chen J, Zheng F, Guo G C. Energetic azide-based coordination polymers: Sensitivity tuning through diverse structural motifs[J]. Chem. Eng. J., 2020,390(15)124587.

    6. [6]

      Zhang W Q, Zhang J H, Deng M C, Qi X J, Nie F D, Zhang Q H. A promising high-energy-density material[J]. Nat. Commun., 2017,8(1):181-185. doi: 10.1038/s41467-017-00286-0

    7. [7]

      Zhang H B, Zhang M J, Lin P, Malgras V, Tang J, Alshehri S M, Yamauchi Y, Du S W, Zhang J. A highly energetic N-rich metal-organic framework as a new high-energy-density material[J]. Chem.-Eur. J., 2016,22(3):1141-1145. doi: 10.1002/chem.201503561

    8. [8]

      Li Q, Yu M H, Xu J, Li A L, Hu T L, Bu X H. Two new metal-organic frameworks based on tetrazole-heterocyclic ligands accompanied by in situ ligand formation[J]. Dalton Trans., 2017,46(10):3223-3228. doi: 10.1039/C7DT00005G

    9. [9]

      Yang Q, Yang G L, Ge J, Yang L L, Song X X, Wei Q, Xie G, Chen S P, Gao S L. Thermodynamic properties of 3D copper(Ⅱ)-MOFs assembled by 1H-tetrazole[J]. J. Therm. Anal. Calorim., 2016,128(2):1175-1182.

    10. [10]

      Zhong Y, Li Z M, Xu Y Q, Lei G R, Zhang J G, Zhang T L. Transition metal(Mn/Co/Ni/Cu) complexes based on 1‑ethylimidazole and di-cyandiamide: Syntheses, characterizations, and catalytic effects on the thermal decomposition of ammonium perchlorate[J]. J. Energ. Mater., 2021,39(2):215-227. doi: 10.1080/07370652.2020.1770897

    11. [11]

      Zhang J H, Zhang Q H, Vo T T, Parrish D A, Shreeve J. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials[J]. J. Am. Chem. Soc., 2015,137(4):1697-1704. doi: 10.1021/ja5126275

    12. [12]

      LIU J J, LIU Z L, CHENG J, FANF D, WANG J. Synthesis, crystal structure and catalytic properties of 2, 6-diamino-3, 5-dinitropyridine-1-oxide cobalt(Ⅲ)[J]. Chinese J. Inorg. Chem., 2013,29(2):289-294. doi: 10.3969/j.issn.1001-4861.2013.02.011

    13. [13]

      Li X, Yang Q, Wei Q, Xie G, Chen S P, Gao S L. Axial substitution of a precursor resulted in two high-energy copper(Ⅰ) complexes with superior detonation performances[J]. Dalton Trans., 2017,46(38):12893-12900. doi: 10.1039/C7DT02179H

    14. [14]

      Yang Q, Yang G L, Zhang W D, Zhang S, Yang Z h, Xie G, Wei Q, Chen S P, Gao S L. Superior thermostability, good detonation property, insensitivity and effect on the thermal decomposition of ammonium perchlorate of a new solvent-free 3D energetic Pb(Ⅱ)-MOF[J]. Chem.-Eur. J., 2017,23(38):9149-9155. doi: 10.1002/chem.201701325

    15. [15]

      Guo Z Q, Wu Y L, Deng C Q, Yang G P, Zhang J G, Sun Z H, Ma H X, Gao C, An Z W. Structural modulation from 1D chain to 3D framework: Improved thermostability, insensitivity, and energies of two nitrogen-rich energetic coordination polymers[J]. Inorg. Chem., 2016,55(21):11064-11071. doi: 10.1021/acs.inorgchem.6b01630

    16. [16]

      Qu X N, Yang Q, Han J, Wei Q, Xie G, Chen S P, Gao S L. High performance 5-aminotetrazole-based energetic MOF and its catalytic effect on decomposition of RDX[J]. RSC Adv., 2016,6(52):46212-46217. doi: 10.1039/C6RA07301H

    17. [17]

      Shen C, Xu Y G, Lu M. A series of high-energy coordination polymers with 3, 6-bis(4-nitroamino-1, 2, 5-oxadiazol-3-yl)-1, 4, 2, 5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: Syntheses, structures, and performance[J]. J. Mater. Chem. A, 2017,5(35):18854-18861. doi: 10.1039/C7TA05479C

    18. [18]

      Kizhnyaev V N, Golobokova T V, Pokatilov F A, Vereshchagin L I, Estrin Y I. Synthesis of energetic triazole- and tetrazole-containing oligomers and polymers[J]. Chem. Heterocycl. Compd., 2017,53(6/7):682-692.

    19. [19]

      Kang L, Wei Z X, Song J F, Qu Y Y, Wang Y L. Two new energetic coordination compounds based on tetrazole-1-acetic acid: Syntheses, crystal structures and their synergistic catalytic effect for thermal decomposition of ammonium perchlorate[J]. RSC Adv., 2016,6(40):33332-33338. doi: 10.1039/C6RA02034H

    20. [20]

      Chen D, Huang S L, Zhang Q, Yu Q, Zhou X Q, Li H Z, Li J S. Two nitrogen-rich Ni(Ⅱ) coordination compounds based on 5, 5-azotetrazole: Synthesis, characterization and effect on thermal decomposition for RDX, HMX and AP[J]. RSC Adv., 2015,5(41):32872-32879. doi: 10.1039/C5RA02464A

    21. [21]

      Guo M. 4, 5-Bis(1H-tetrazol-5-yl)-1H-imidazole monohydrate[J]. Acta Crystallogr., Sect. E, 2009,E65(6):O1403-U2972.

    22. [22]

      Tang Y X, Kumar D, Shreeve J M. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1, 2, 3, 4-tetrazine[J]. J. Am. Chem. Soc., 2017,139(39):13684-13687. doi: 10.1021/jacs.7b08789

    23. [23]

      Zhai C, Yang Z Y, Xu D, Wang Z K, Hao X Y, Shi Y J, Yang G W, Li Q Y. pH dependent synthesis of two zinc(Ⅱ) compounds derived from 5-aminotetrazole-1-isopropanoic acid for treatment of cancer cells[J]. J. Solid State Chem., 2017,258:156-162.

    24. [24]

      Xu Y Q, Wang Y N, Zhong Y, Lei G R, Li Z M, Zhang J G, Zhang T L. Transition metal complexes based on hypergolic anions for catalysis of ammonium perchlorate thermal decomposition[J]. Energy Fuels, 2020,34(11):14667-14675. doi: 10.1021/acs.energyfuels.0c02570

    25. [25]

      Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957,29(11):1702-1706. doi: 10.1021/ac60131a045

    26. [26]

      Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull. Chem. Soc. Jpn., 1965,38(11):1881-1886. doi: 10.1246/bcsj.38.1881

    27. [27]

      Tang Y X, He C L, Mitchell L A, Shreeve J M. Potassium 4, 4′-bis (dinitromethyl)-3, 3′-azofurazanate: A highly energetic 3D metal-organic framework as a promising primary explosive[J]. Angew. Chem. Int. Ed., 2016,128(18):5655-5657. doi: 10.1002/ange.201601432

    28. [28]

      Zhang S, Liu X Y, Yang Q, Su Z Y, Gao W J, Wei Q, Xie G, Chen S P, Gao S L. A new strategy for storage and transportation of sensitive high energy materials: Guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds[J]. Chem.-Eur. J., 2014,20(26):7906-7910. doi: 10.1002/chem.201402783

    29. [29]

      Kamlet M J, Hurwitz H. Chemistry of detonations. Ⅳ. Evaluation of a simple predictional method for detonation velocities of C—H—N—O explosives[J]. J. Chem. Phys., 1968,48(8):3685-3692. doi: 10.1063/1.1669671

    30. [30]

      Wang Y, Zhang J C, Su H, Li S H, Zhang S W, Pang S. P.. A simple method for the prediction of the detonation performances of metal-containing explosives[J]. J. Phys. Chem. A, 2014,118(25):4575-4581. doi: 10.1021/jp502857d

    31. [31]

      Yang G L, Li X, Wang M, Xia Z Q, Yang Q, Wei Q, Xie G, Chen S P, Gao S L, Lu J. Improved detonation performance via coordination substitution: Synthesis and characterization of two new green energetic coordination polymers[J]. ACS Appl. Mater. Interfaces, 2021,13(1):563-569. doi: 10.1021/acsami.0c18271

    32. [32]

      Bushuyev O S, Brown P, Maiti A, Gee R H, Peterson G R, Weeks B L, Hope-Weeks L J. Ionic polymers as a new structural motif for high-energy-density materials[J]. J. Am. Chem. Soc., 2012,134(3):1422-1425. doi: 10.1021/ja209640k

    33. [33]

      Bushuyev O S, Peterson G R, Brown P, Maiti A, Gee R H, Weeks B L, Hope-Weeks L J. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics[J]. Chem.-Eur. J., 2013,19(5):1706-1711. doi: 10.1002/chem.201203610

    34. [34]

      Li S H, Wang Y, Cai Q, Zhao X X, Zhang J C, Zhang S W, Pang S P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials[J]. Angew. Chem. Int. Ed., 2013,52(52):14031-14035. doi: 10.1002/anie.201307118

    35. [35]

      Qin J S, Zhang J C, Zhang M, Du D Y, Li J, Su Z M, Wang Y Y, Pang S P, Li S. H, Lan Y Q. A highly energetic N-rich zeolite-like metal-organic framework with excellent air stability and insensitivity[J]. Adv. Sci., 2015,2(12)1500150. doi: 10.1002/advs.201500150b03397

    36. [36]

      Shusser M, Culick F E C, Cohen N S. Combustion response of ammonium perchlorate composite propellants[J]. J. Propul. Power, 2002,18(5):1093-1100. doi: 10.2514/2.6039

    37. [37]

      Cheng J, Zheng Y, Li Z M, Liu Z L, Li L X, Zhao F Q, Xu S Y. Catalytic reaction of ammonium perchlorate with energetic cobalt complex of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide during thermal decomposition process[J]. J. Therm. Anal. Calorim., 2017,129(3):1875-1885. doi: 10.1007/s10973-017-6263-y

    38. [38]

      Hsieh W H, Li W Y. Combustion behavior and thermochemical properties of RDX-based solid propellants[J]. Propellants Explos. Pyrotech., 2015,23(3):128-136.

  • 加载中
    1. [1]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    2. [2]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    5. [5]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    10. [10]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    11. [11]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    12. [12]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    13. [13]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    19. [19]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    20. [20]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(0)
  • Abstract views(327)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return