Citation: Xue-Feng SHEN, Jia-Jia DING, Hong-Xing LIU. Hierarchical SAPO-34 templated by amphiphilic single-quaternary-ammonium surfactants[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2065-2073. doi: 10.11862/CJIC.2023.180 shu

Hierarchical SAPO-34 templated by amphiphilic single-quaternary-ammonium surfactants

  • Corresponding author: Hong-Xing LIU, liuhx.sshy@sinopec.com
  • Received Date: 31 May 2023
    Revised Date: 11 October 2023

Figures(7)

  • The introduction of mesopores and downsizing of the crystals of SAPO-34 can enhance its diffusion efficiency, leading to high catalytic activity in methanol-to-olefin (MTO) reactions. Amphiphilic single-quaternary-ammonium molecules with different lengths of carbon chains ([N+(CH2CH3)3-CnH2n+1] [Br-], Cn-1N (n=4, 6, 8)) were designed and synthesized as co-structure directing agents. Due to the electrostatic interaction, amphiphilic molecules acted as crystal growth inhibitors or pore-forming agents, which resulted in the formation of hierarchical SAPO-34 (HS) zeolite with a smaller crystal size. When the carbon chain length was four (C4-1N), the hierarchical SAPO-34 zeolite (HS-4) was synthesized with a smaller crystal size and without other crystal phases. SAPO-34 zeolites with high mesopore volume (HS-6 and HS-8) were synthesized with C6-1N and C8-1N as co-structure directing agents. Without adding a co-structure directing agent, conventional SAPO-34 (CS) was synthesized. There were many tetrahedral particles in CS, which is the early morphology of the cubic particles. The results of the X-ray fluorescence spectrometer (XRF) and 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR) indicated that Cn-1N molecules restrain Si atoms from incorporating into the AlPO4 framework. The results of NH3-temperature-programmed desorption (NH3-TPD) proved the strong acid gradually decreases in the order of CS > HS-8 > HS-6 > HS-4. The diffusion behaviors of methanol molecules in HS-4, HS-6, and HS-8 were better than in CS. HS-4 showed excellent catalytic performance in MTO reaction: the selectivity of ethylene (C2H4) and propylene (C3H6) (84.4%) has improved by about 4% compared to that of CS (80.5%), and the catalyst lifetime of HS-4 was about two times the lifetime of CS. HS-6 also exhibited high selectivity of C2H4 and C3H6 (83.5%), and its lifetime was almost the same as HS-4. HS-8 had a high mesopore volume, but the higher strong acidity promoted hydrogen transfer reactions, leading to alkanes, aromatics, and coke, so the lifetime of HS-8 in MTO reaction was slightly prolonged.
  • 加载中
    1. [1]

      Corma A. Inorganic solid acids and their use in acid-catalyzed hydro-carbon reactions[J]. Chem. Rev., 1995,95(3):559-614. doi: 10.1021/cr00035a006

    2. [2]

      Hölderich W F, Heitmann G. Synthesis of intermediate and fine chemicals on heterogeneous catalysts with respect to environmental protection[J]. Catal. Today, 1997,38(2):227-233. doi: 10.1016/S0920-5861(97)00071-0

    3. [3]

      Verhoef M J, Kooyman P J, van der Waal J C, Rigutto M S, Peters J A, van Bekkum H. Partial transformation of MCM-41 material into zeolites: Formation of nanosized MFI type crystallites[J]. Chem. Mater., 2001,13(2):683-687. doi: 10.1021/cm001127q

    4. [4]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time[J]. Chem. Rev., 2003,103(3):663-702. doi: 10.1021/cr020060i

    5. [5]

      Čejka J, Wichterlová B. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites: Active sites, zeolite topology, and reaction mechanisms[J]. Catal. Rev., 2002,44(3):375-421. doi: 10.1081/CR-120005741

    6. [6]

      Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance[J]. Chem. Commun., 2014,50(49):6502-6505. doi: 10.1039/c4cc02050b

    7. [7]

      Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc., 1984,106(20):6092-6093. doi: 10.1021/ja00332a063

    8. [8]

      Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications[J]. Catal. Sci. Technol., 2017,7(21):4905-4923. doi: 10.1039/C7CY01466J

    9. [9]

      Venna S R, Carreon M A. Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors[J]. J. Phys. Chem. B, 2008,112(51):16261-16265. doi: 10.1021/jp809316s

    10. [10]

      Shi H. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation[J]. New J. Chem., 2014,38(11):5276-5278. doi: 10.1039/C4NJ01405G

    11. [11]

      Sun Q M, Wang N, Guo G Q, Chen X X, Yu J H. Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance[J]. J. Mater. Chem. A, 2015,3(39):19783-19789. doi: 10.1039/C5TA04642D

    12. [12]

      Zhang C, Lu X C, Wang T Z. Synthesis of SAPO-34 using metakaolin in the presence of β-cyclodextrin[J]. J. Energy Chem., 2015,24(4):401-406. doi: 10.1016/j.jechem.2015.06.008

    13. [13]

      Zheng J W, Zhang W P, Liu Z T, Huo Q S, Zhu K K, Zhou X G, Yuan W K. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties[J]. Microporous Mesoporous Mat., 2016,225:74-87. doi: 10.1016/j.micromeso.2015.12.007

    14. [14]

      Cui Y, Zhang Q, He J, Wang Y, Wei F. Pore-structure-mediated hierarchical SAPO-34:Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins[J]. Particuology, 2013,11(4):468-474. doi: 10.1016/j.partic.2012.12.009

    15. [15]

      Yang H, Liu X H, Lu G Z, Wang Y Q. Synthesis of SAPO-34 nanoplates via hydrothermal method[J]. Microporous Mesoporous Mat., 2016,225:144-153. doi: 10.1016/j.micromeso.2015.12.017

    16. [16]

      Kong L T, Shen B X, Jiang Z, Zhao J G, Liu J C. Synthesis of SAPO-34 with the presence of additives and their catalytic performance in the transformation of chloromethane to olefins[J]. React. Kinet. Mech. Catal., 2015,114(2):697-710. doi: 10.1007/s11144-014-0812-1

    17. [17]

      Wang C, Yang M, Tian P, Xu S T, Yang Y, Wang D H, Yuan Y Y, Liu Z M. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to ole fi ns reaction[J]. J. Mater. Chem. A, 2015,3(10):5608-5616. doi: 10.1039/C4TA06124A

    18. [18]

      Sun C, Zhao A J, Wang Y Q, Wang Z Y, Zhao J J, Zhao T T, Liu W R, Shi M X, Lu J X, Wu S H, Bu L Z. Organosilane-assistant synthesis of hierarchical SAPO-34 aggregates with superior MTO performance[J]. Microporous Mesoporous Mat., 2021,310110619. doi: 10.1016/j.micromeso.2020.110619

    19. [19]

      Wang C, Yang M, Zhang W N, Su X, Xu S T, Tian P, Liu Z M. Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance[J]. RSC Adv., 2016,6(53):47864-47872. doi: 10.1039/C6RA06428K

    20. [20]

      Shen X F, Du Y J, Ding J J, Wang C M, Liu H X, Yang W M, Xie Z K. Affecting the formation of the micro-structure and meso/macro-structure of SAPO-34 zeolite by amphipathic molecules[J]. ChemCatChem, 2020,12(19):4904-4910. doi: 10.1002/cctc.202000794

    21. [21]

      Bu X H, Feng P Y, Stucky G D. Large-cage zeolite structures with multidimensional 12-ring channels[J]. Science, 1997,278(5346):2080-2085. doi: 10.1126/science.278.5346.2080

    22. [22]

      Moliner M, Rey F, Corma A. Towards the rational design of efficient organic structure-directing agents for zeolite synthesis[J]. Angew. Chem. Int. Ed., 2013,52(52):13880-13889. doi: 10.1002/anie.201304713

    23. [23]

      Lok B M, Cannan T R, Messina C A. The role of organic molecules in molecular sieve synthesis[J]. Zeolites, 1983,3(4):282-291. doi: 10.1016/0144-2449(83)90169-0

    24. [24]

      Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461(7261):246-249. doi: 10.1038/nature08288

    25. [25]

      Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011,333(6040):328-332. doi: 10.1126/science.1204452

    26. [26]

      Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S A. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nat. Commun., 2014,5(1)4262. doi: 10.1038/ncomms5262

    27. [27]

      Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S A. A hierarchical MFI zeolite with a two-dimensional square mesostructure[J]. Angew. Chem. Int. Ed., 2018,57(3):724-728. doi: 10.1002/anie.201710748

    28. [28]

      Aghamohammadi S, Haghighi M, Charghand M. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance[J]. Mater. Res. Bull., 2014,50:462-475. doi: 10.1016/j.materresbull.2013.11.014

    29. [29]

      Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Yan Z F. Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve[J]. Microporous Mesoporous Mat., 2009,126(1/2):1-7.

    30. [30]

      Gong J, Tong F, Ji X B, Zeng C F, Wang C Q, Lv Y N, Zhang L X. Hollow SAPO-34 cubes with hierarchically organized internal structure[J]. Cryst. Growth Des., 2014,14(8):3857-3863. doi: 10.1021/cg500382w

    31. [31]

      Xi D Y, Sun Q M, Xu J, Cho M, Cho H S, Asahina S, Li Y, Deng F, Terasaki O, Yu J H. In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity[J]. J. Mater. Chem. A, 2014,2(42):17994-18004. doi: 10.1039/C4TA03030C

    32. [32]

      Tan J, Liu Z M, Bao X H, Liu X C, Han X W, He C Q, Zhai R S. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous Mesoporous Mat., 2002,53(1/2/3):97-108.

    33. [33]

      Buchholz A, Wang W, Xu M, Arnold A, Hunger M. Sequential steps of ammoniation of the microporous silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy[J]. J. Phys. Chem. B, 2004,108(10):3107-3113. doi: 10.1021/jp030249d

    34. [34]

      Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions[J]. J. Phys. Chem. C, 2013,117(16):8214-8222. doi: 10.1021/jp312857p

    35. [35]

      Yang H Q, Liu Z C, Gao H X, Xie Z K. Synthesis and catalytic performances of hierarchical SAPO-34 monolith[J]. J. Mater. Chem., 2010,20(16):3227-3231. doi: 10.1039/b924736j

    36. [36]

      Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts[J]. Chem. Soc. Rev., 2015,44(20):7155-7176. doi: 10.1039/C5CS00304K

    37. [37]

      Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew. Chem. Int. Ed., 2012,51(24):5810-5831. doi: 10.1002/anie.201103657

    38. [38]

      Wang S, Chen Y Y, Wei Z H, Qin Z F, Ma H, Dong M, Li J F, Fan W B, Wang J G. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite[J]. J. Phys. Chem. C, 2015,119(51):28482-28498. doi: 10.1021/acs.jpcc.5b10299

    39. [39]

      Müller S, Liu Y, Kirchberger F M, Tonigold M, Sanchez-Sanchez M, Lercher J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. J. Am. Chem. Soc., 2016,138(49):15994-16003. doi: 10.1021/jacs.6b09605

    40. [40]

      Liu X L, Shi J, Yang G, Zhou J, Wang C M, Teng J W, Wang Y D, Xie Z K. A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance[J]. Commun. Chem., 2021,4107. doi: 10.1038/s42004-021-00543-w

    41. [41]

      Liu X L, Wang Y, Zhou J, Wang C M, Shi J, Ye Y C, Wang Y D, Teng J W, Xie Z K. Steering interface effect of H-ZSM-5 zeolites with tailored surface barriers to improve their catalytic performances[J]. Chem. Commun., 2023,59:470-473. doi: 10.1039/D2CC05964A

    42. [42]

      Choudhary V R, Srinivasan K R. Sorption and diffusion of benzene in H-ZSM-5:Effect of ratio, degree of cation exchange and pretreatment conditions[J]. J. Catal., 1986,102(2):328-337. doi: 10.1016/0021-9517(86)90169-7

    43. [43]

      Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat. Catal., 2018,1(6):398-411. doi: 10.1038/s41929-018-0078-5

    44. [44]

      Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat. Commun., 2019,10(1)1297. doi: 10.1038/s41467-019-09336-1

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(1)
  • Abstract views(421)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return