Citation: Hao-Tian WANG, Shan-He GONG, Wen-Bo WANG, Dong-Dong GE, Xiao-Meng LÜ. Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2151-2159. doi: 10.11862/CJIC.2023.177 shu

Efficient and stable electrocatalytic reduction of CO2 by ZIF-8 composites

  • Corresponding author: Xiao-Meng LÜ, laiyangmeng@163.com
  • Received Date: 5 April 2023
    Revised Date: 13 September 2023

Figures(7)

  • Electrocatalytic CO2 reduction reaction (eCO2RR) is still limited by the intrinsic activity and mass transfer of catalysts, resulting in low catalytic activity and high reaction onset potential. Herein, we explored the eCO2RR performance of zeolite imidazole framework (ZIF-8) with different sizes. We took ZIF-8 with a particle size of 50 nm as the research object, and further introduced carbon nanotubes (CNT) as the conductive substrate material. The hierarchical porous structure and hydrophobic interface of ZIF-8-50@CNT were constructed by in-situ growth. The results of eCO2RR experiment showed that the introduction of CNT improved the conductivity of the catalyst, and the optimized composite effectively reduced the onset potential of the reaction. At -1.1 V (versus reversible hydrogen electrode (RHE)), the partial CO current density of ZIF-8-50@CNT was 15.6 mA·cm-2, and the catalyst surface activity of ZIF-8-50@CNT catalyst is increased by 3.5 times that of ZIF-8-50, and the Tafel slope was reduced to 136 mV·dec-1. The selectivity and stability of the product CO were improved, and the Faraday efficiency (FE) of CO remained 80% at -0.9--1.2 V (vs RHE). In the 10 h stability test, the catalyst remained stable. The overall eCO2RR performance of catalyst was enhanced.
  • 加载中
    1. [1]

      Abdlraouf S M, Shahram G, Hamid G R. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine[J]. Sens. Actuator B-Chem., 2015,220:627-633. doi: 10.1016/j.snb.2015.05.127

    2. [2]

      Moore E C, Ciccotto P J, Peterson E N, Lamm M S, Albertson R C, Roberts R B. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish[J]. Proc. Natl. Acad. Sci. U.S.A., 2022,119(14)2118574119. doi: 10.1073/pnas.2118574119

    3. [3]

      Luo Y H, Liu J, Dong L Z, Li S L, Lan Y Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure[J]. Coord. Chem. Rev., 2019,390:86-126. doi: 10.1016/j.ccr.2019.03.019

    4. [4]

      Yang C H, Li S Y, Zhang Z C, Wang H Q, Liu H L, Jiao F, Guo Z G, Zhang X T, Hu W P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction[J]. Small, 2020,16(29)2001847. doi: 10.1002/smll.202001847

    5. [5]

      Zhu M H, Chen J C, Huang L B, Ye R Q, Xu J, Han Y F. Structure-tunable copper-indium catalysts for highly selective CO2 electroreduction to CO or HCOOH[J]. Angew. Chem. Int. Ed., 2019,58(20):6595-6599. doi: 10.1002/anie.201900499

    6. [6]

      An X W, Li S S, Hao X Q, Xie Z K, Du X, Wang Z D, Hao X G, Abudula A, Guan G Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renew. Sust. Energ. Rev., 2021,143110952. doi: 10.1016/j.rser.2021.110952

    7. [7]

      Sun X L, Wang Q L, Liu Y Y, Zhang J J. Facile synthesis and composition-tuning of bimetallic PbCd nanoparticles as superior CO2-to-HCOOH electrocatalysts[J]. Int. J. Energ. Res., 2022,46(12):17015-17028. doi: 10.1002/er.8365

    8. [8]

      Liang S Y, Huang L, Gao Y S, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv. Sci., 2021,8(24)2102886. doi: 10.1002/advs.202102886

    9. [9]

      Wang W B, Lu R Q, Xiao X X, Gong S H, Sam D K, Liu B, Lv X M. CuAg nanoparticle/carbon aerogel for electrochemical CO2 reduction[J]. New J. Chem., 2021,45:18290-18295. doi: 10.1039/D1NJ03540A

    10. [10]

      Wang W B, Gong S H, Liu J, Ge Y, Wang J, Lv X M. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J. Colloid Interface Sci., 2021,595:159-167. doi: 10.1016/j.jcis.2021.03.120

    11. [11]

      Gong S H, Wang W B, Lu R Q, Zhu M H, Wang H T, Zhang Y, Xie J M, Wu C D, Liu J, Li M X, Shao S Y, Zhu G S, Lv X M. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2022,318121813. doi: 10.1016/j.apcatb.2022.121813

    12. [12]

      Gong S H, Wang W B, Zhang C N, Zhu M H, Lu R Q, Ye J J, Yang H, Wu C D, Liu J, Rao D W, Shao S Y, Lv X M. Tuning the metal electronic structure of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[J]. Adv. Funct. Mater., 2022,32(17)2110649. doi: 10.1002/adfm.202110649

    13. [13]

      Gong S H, Wang W B, Xiao X X, Liu J, Wu C D, Lv X M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[J]. Nano Energy, 2021,84105904. doi: 10.1016/j.nanoen.2021.105904

    14. [14]

      Wang Y F, Li Y X, Wang Z Y, Allan P, Zhang F C, Lu Z G. Reticular chemistry in electrochemical carbon dioxide reduction[J]. Sci. China Mater., 2020,63(7):1113-1141. doi: 10.1007/s40843-020-1304-3

    15. [15]

      Kim M J, Xin R J, Earnshaw J, Tang J, Hill J P, Ashok A, Nanjundan A K, Kim J H, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures[J]. Nat. Protoc., 2022,17(12):2990-3027. doi: 10.1038/s41596-022-00718-2

    16. [16]

      Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m

    17. [17]

      Li S C, Hu B C, Shang L M, Ma T, Li C, Liang H W, Yu S H. General synthesis and solution processing of metal-organic framework nanofibers[J]. Adv. Mater., 2022,34(29)2202504. doi: 10.1002/adma.202202504

    18. [18]

      Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022,34(11)2107072. doi: 10.1002/adma.202107072

    19. [19]

      Fan X X, Zhou J W, Wang T, Zheng J, Li X G. Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates[J]. RSC Adv., 2015,5(72):58595-58599. doi: 10.1039/C5RA09981A

    20. [20]

      Ahmad A, lqbal N, Noor T, Hassan A, Khan U A, Wahab A, Raza M A, Ashraf S. Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction[J]. J. CO2 Util., 2021,48101523. doi: 10.1016/j.jcou.2021.101523

    21. [21]

      Guan Y Y, Liu Y Y, Yi J, Zhang J J. Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction[J]. Dalton Trans., 2022,51(18):7274-7283. doi: 10.1039/D2DT00906D

    22. [22]

      Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z C, Wang X. Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping[J]. Angew. Chem. Int. Ed., 2019,58(12):4041-4045. doi: 10.1002/anie.201814711

    23. [23]

      Jiang X L, Li H B, Xiao J P, Gao D F, Si R, Yang F, Li Y S, Wang G X, Bao X H. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(Ⅱ) center in ZIFs[J]. Nano Energy, 2018,52:345-350. doi: 10.1016/j.nanoen.2018.07.047

    24. [24]

      Yang F, Xie J H, Liu X Q, Wang G Z, Lu X H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-Air batteries[J]. Small, 2021,17(3)2007085. doi: 10.1002/smll.202007085

    25. [25]

      Yang Y, Ge L, Rudolph V, Zhu Z H. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption[J]. Dalton Trans., 2014,43(19):7028-7036. doi: 10.1039/c3dt53191k

    26. [26]

      Xiang Z H, Hu Z, Cao D P, Yang W T, Lu J M, Han B Y, Wang W C. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angew. Chem. Int. Ed., 2011,50(2):491-494. doi: 10.1002/anie.201004537

    27. [27]

      LIU M M, LÜ W M, SHI X F, FAN B B, LI R F. Characterization and catalytic performence of zeolitic imidazolate framework-8 (ZIF-8) synthesized by different methods[J]. Chinese J. Inorg. Chem., 2014,30(3):579-584.  

    28. [28]

      Ren G S, Dai T F, Tang Y, Su Z H, Xu N, Du W C, Dai C Y, Ma X X. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction[J]. J. CO2 Util., 2022,65102256. doi: 10.1016/j.jcou.2022.102256

    29. [29]

      Li J C, Meng Y, Zhang L L, Li G Z, Shi Z C, Hou P X, Liu C, Cheng H M, Shao M H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries[J]. Adv. Funct. Mater., 2021,312103360. doi: 10.1002/adfm.202103360

    30. [30]

      Cho J H, Lee C, Hong S H, Jang H Y, Back S, Seo M, Lee M, Min H K, Choi Y, Jang Y J, Ahn S H, Jang H W, Kim S Y. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction[J]. Adv. Mater., 20222208224.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(12)
  • Abstract views(609)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return