Citation: Hui ZHANG, Li-Qing CHENG, Ming-Yue HU, Ming-Yu LI, Jian-Fei ZHENG, Si-Tian XIN, Cai-Hong FANG, Heng CHEN, Yi-Qiong YANG, Long-Hui NIE. Efficient degradation of RhB over BiOBr/g-C3N4 S-scheme heterojunction by a H2O2-free photo-self-Fenton catalysis[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2121-2130. doi: 10.11862/CJIC.2023.175 shu

Efficient degradation of RhB over BiOBr/g-C3N4 S-scheme heterojunction by a H2O2-free photo-self-Fenton catalysis

Figures(9)

  • The fabrication of the BiOBr/g-C3N4 S-scheme heterojunction is an effective way to improve photocatalytic activity. Yet, its photocatalytic activity is expected to further improve, and its photo-Fenton catalytic activity for pollutant degradation in the absence of H2O2 has not been investigated up to now. In this work, a BiOBr/g-C3N4 S-scheme heterojunction photocatalyst was successfully prepared by a calcination-ultrasonic mixing method. Herein, its photo-self-Fenton catalytic activity was investigated for the first time in the absence of H2O2. The physical properties of the samples were characterized by X-ray polycrystalline powder diffractometer (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Photocatalytic and photo-self-Fenton catalytic degradation of rhodamine B (RhB) were studied over BiOBr/g-C3N4 S-scheme heterojunction without/with Fe3+ in the absence of H2O2, respectively. The main active species in the photo-self-Fenton catalytic reaction were determined by capturing experiments, and the degradation mechanism of the photo-self-Fenton catalysis was proposed. The results showed that H2O2 could be formed in situ over the BiOBr/g-C3N4 S-scheme heterojunction under visible-light irradiation. The photogenerated current and the separation efficiency of photo-generated carriers can be greatly improved in the presence of Fe3+ over BiOBr/g-C3N4 S-scheme heterojunction, resulting in the enhancement of photocatalytic efficiency for RhB degradation in the photo-self-Fenton process than in the photocatalytic reaction without Fe3+. The reaction rate constant of photo-self-Fenton over BiOBr/g-C3N4 S-scheme heterojunction with Fe3+ was 0.208 min-1, which was about 5.3 times that of photocatalysis without Fe3+. It also showed good stability in the recycling experiment. The addition of Fe3+ promotes the separation of photogenerated charges and the activation of generated H2O2 by the Fe2+/Fe3+ redox cycle. The results of capturing experiments show that superoxide anion radicals (·O2-) and holes (h+) are found the main active species, and ·O2-plays a more important role in photo-self-Fenton catalysis.
  • 加载中
    1. [1]

      Zheng J F, Xu Z, Xin S T, Zhu B C, Nie L H. Generation of singlet oxygen over CeO2/K, Na-codoped g-C3N4 for tetracycline hydrochloride degradation over a wide pH range[J]. Dalton Trans., 2022,51:12883-12894. doi: 10.1039/D2DT01748B

    2. [2]

      Deng J Y, Zhu S L, Zheng J F, Nie L H. Preparation of multi-dimensional (1D/2D/3D) carbon/g-C3N4 composite photocatalyst with enhanced visible-light catalytic performance[J]. J. Colloid Interface Sci., 2020,569:320-331. doi: 10.1016/j.jcis.2020.02.100

    3. [3]

      Ji J H, Yan Q Y, Yin P C, Mine S Y, Matsuoka M, Xing M Y. Defects on CoS2-x: Tuning redox reactions for sustainable degradation of organic pollutants[J]. Angew. Chem. Int. Ed., 2021,60:2903-2908. doi: 10.1002/anie.202013015

    4. [4]

      CHEN Y S, ZHENG J F, ZHU S L, XIONG M Y, NIE L H. One-step hydrothermal preparation and performance of BiOBr/BiPO4 p-n heterojunction photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(10):1828-1838.  

    5. [5]

      Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angew. Chem. Int. Ed., 2021,60:21751-21755. doi: 10.1002/anie.202109488

    6. [6]

      Wang W N, Huang C X, Zhang C Y, Zhao M L, Zhang J, Chen H J, Zha Z B, Zhao T T, Qian H S. Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light[J]. Appl. Catal. B Environ., 2018,224:854-862. doi: 10.1016/j.apcatb.2017.11.037

    7. [7]

      Wang J, Wang G H, Cheng B, Yu J G, Fan J J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chin. J. Catal., 2021,42:56-68. doi: 10.1016/S1872-2067(20)63634-8

    8. [8]

      Yan Q Y, Lian C, Huang K, Liang L H, Yu H R, Yin P C, Zhang J L, Xing M Y. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control[J]. Angew. Chem. Int. Ed., 2021,60:17155-17163. doi: 10.1002/anie.202105736

    9. [9]

      Zheng J F, Li L, Dai Z Y, Tian Y L, Fang T, Xin S T, Zhu B C, Liu Z J, Nie L H. A novel Fenton-like catalyst of Ag3PO4/g-C3N4: Its performance and mechanism for tetracycline hydrochloride degradation in dark[J]. Appl. Surf. Sci., 2022,571151305. doi: 10.1016/j.apsusc.2021.151305

    10. [10]

      WANG W L, ZHANG H C, CHEN Y G, SHI H F. Efficient degradation of tetracycline via coupling of photocatalysis and photo-Fenton processes over a 2D/2D α-Fe2O3/g-C3N4 S-scheme heterojunction catalyst[J]. Acta Phys.-Chim. Sin., 2022,38(7)2201008.  

    11. [11]

      Li X N, Huang X, Xi S B, Miao S, Ding J, Cai W Z, Liu S, Yang X L, Yang H B, Gao J J, Wang J H, Huang Y Q, Zhang T, Liu B. Single cobalt atoms anchored on porous n-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. J. Am. Chem. Soc., 2018,140:12469-12475. doi: 10.1021/jacs.8b05992

    12. [12]

      Yang C W, Wang D, Tang Q, Macrae J Y. Removal of aniline from water by an Fe(Ⅱ)-nano-Fe3O4@PAC heterogeneous catalyst in a Fenton-like process[J]. Environ. Technol., 2021,42:545-557. doi: 10.1080/09593330.2019.1637462

    13. [13]

      Guo T, Wang K, Zhang G K, Wu X Y. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance[J]. Appl. Surf. Sci., 2019,469:331-339. doi: 10.1016/j.apsusc.2018.10.183

    14. [14]

      Wang X T, Li Y, Zhang X Q, Li J F, Luo Y N, Wang C W. Fabrication of a magnetically separable Cu2ZnSnS4/ZnFe2O4 p-n heterostructured nano-photocatalyst for synergistic enhancement of photocatalytic activity combining with photo-Fenton reaction[J]. Appl. Surf. Sci., 2019,479:86-95. doi: 10.1016/j.apsusc.2019.02.045

    15. [15]

      HU L X, XU D D, ZOU L P, YUAN H, HU X. Heterogeneous Fenton oxidation of refractory dye rhodamine B in aqueous solution with mesoporous Fe/SBA-15[J]. Acta Phys.-Chim. Sin., 2015,31(4):771-782.  

    16. [16]

      Yang Y, Zhu B C, Wang L B, Cheng B, Zhang L Y, Yu J G. In-situ grown N, S co-doped graphene on TiO2 fiber for artificial photosynthesis of H2O2 and mechanism study[J]. Appl. Catal. B-Environ., 2022,317121788. doi: 10.1016/j.apcatb.2022.121788

    17. [17]

      Jiang Z C, Cheng B, Zhang Y, Wageh S, Al-Ghamdi A A, Yu J G, Wang L X. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production[J]. J. Mater. Sci. Technol., 2022,124:193-201. doi: 10.1016/j.jmst.2022.01.029

    18. [18]

      Zhang Y, Qiu J Y, Zhu B C, Fedin M V, Cheng B, Yu J G, Zhang L Y. ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance[J]. Chem. Eng. J., 2022,444136584. doi: 10.1016/j.cej.2022.136584

    19. [19]

      HAN G W, XU F Y, CHENG B, LI Y J, YU J G, ZHANG L Y. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions[J]. Acta Phys.-Chim. Sin., 2022,38(7)2112037.  

    20. [20]

      Yang C, Wan S J, Zhu B C, Yu J G, Cao S W. Calcination-regulated Microstructures of donor-acceptor polymers towards enhanced and stable photocatalytic H2O2 production in pure water[J]. Angew. Chem. Int. Ed, 2022,134(39)e202208438. doi: 10.1002/ange.202208438

    21. [21]

      ZHANG K Y, LI Y F, YUAN S D, ZHANG L H, WANG Q. Review of S-scheme heterojunction photocatalyst for H2O2 production[J]. Acta Phys.-Chim. Sin., 2023,39(6)2212010.  

    22. [22]

      Wang L X, Zhang J J, Zhang Y, Yu H G, Qu Y H, Yu J G. Inorganic metal-oxide photocatalyst for H2O2 production[J]. Small, 2022,182104561. doi: 10.1002/smll.202104561

    23. [23]

      Lin J K, Tian W J, Guan Z Y, Zhang H Y, Duan X G, Wang H, Sun H Q, Fang Y F, Huang Y P, Wang S B. Functional carbon nitride materials in photo-Fenton-like catalysis for environmental remediation[J]. Adv. Funct. Mater., 2022,322201743. doi: 10.1002/adfm.202201743

    24. [24]

      Wang X N, Zhang X C, Zhang Y, Wang Y, Sun S P, Wu W D, Wu Z X. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: A review[J]. J. Mater. Chem. A, 2020,8:15513-15546. doi: 10.1039/D0TA04541A

    25. [25]

      Mi Y W, Li H P, Zhang Y F, Du N, Hou W G. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes[J]. Catal. Sci. Technol., 2018,8:2588-2597. doi: 10.1039/C8CY00143J

    26. [26]

      Wu D, Ye L Q, Yue S T, Wang B, Wang W, Yip H Y, Wong P K. Alkali-induced in situ fabrication of Bi2O4-decorated BiOBr nanosheets with excellent photocatalytic performance[J]. J. Phys. Chem. C, 2016,120:7715-7727. doi: 10.1021/acs.jpcc.6b02365

    27. [27]

      Khampuanbut A, Santalelat S, Pankiew A, Channei D, Pornsuwan S, Faungnawakij K, Phanichphant S, Inceesungvorn B. Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight[J]. J. Colloid Interface Sci., 2020,560:213-224. doi: 10.1016/j.jcis.2019.10.057

    28. [28]

      Hu X L, Li C Q, Song J Y, Zheng S L, Sun Z M. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. J. Colloid Interface Sci., 2020,574:61-73. doi: 10.1016/j.jcis.2020.04.035

    29. [29]

      DENG J Y, WANG J, ZHU S L, NIE L H. Preparation and performance of Ag3PO4/Ag2S/g-C3N4 composite photocatalyst[J]. Chinese J. Inorg. Chem., 2019,35(6):955-964.  

    30. [30]

      Liu F, Xu T T, Jiang Z Y. Insights into the photocatalytic mechanism of S-scheme g-C3N4/BiOBr heterojunction[J]. Inorg. Chem. Commun., 2022,143109732. doi: 10.1016/j.inoche.2022.109732

    31. [31]

      ZHANG B, HU X Y, LIU E Z, FAN J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Chinese J. Catal., 2021,42(9):1519-1529.  

    32. [32]

      LI N, WANG M, ZHAO B P, CAO X L. g-C3N4-BiOBr Composites: Synthesis and high photocatalytic performance under visible-light irradiation[J]. Chinese J. Inorg. Chem., 2016,32(6):1033-1040.  

    33. [33]

      Lian X Y, Chen S H, He F Y, Dong S, Liu E Z, Li H, Xu K. Z.. Photocatalytic degradation of ammonium dinitramide over novel S-scheme g-C3N4/BiOBr heterostructure nanosheets[J]. Sep. Purif. Technol., 2022,286120449. doi: 10.1016/j.seppur.2022.120449

    34. [34]

      Chen Y, Li Y G, Luo N D, Shang W K, Shi S S, Li H J, Liang Y. D, Zhou A N. Kinetic comparison of photocatalysis with H2O2-free photo-Fenton process on BiVO4 and the effective antibiotic degradation[J]. Chem. Eng. J., 2022,429132577. doi: 10.1016/j.cej.2021.132577

    35. [35]

      JIA X Q, BAI X Y, JI Z Z, LI Y, SUN Y, MI X Y, ZHAN S H. Insight into the effective removal of ciprofloxacin using a two-dimensional layered NiO/g-C3N4 composite in Fe-free photo-electro-Fenton system[J]. Acta Phys.-Chim. Sin., 2021,37(8)2010042.  

    36. [36]

      Zhu Y P, Zhu R L, Xi Y F, Zhu J X, Zhu G Q, He H P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review[J]. Appl. Catal. B-Environ., 2019,255117739. doi: 10.1016/j.apcatb.2019.05.041

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(3)
  • Abstract views(489)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return